from sentence_transformers import SentenceTransformer import numpy as np def get_embedding(text): model = SentenceTransformer("all-MiniLM-L6-v2") sentences = text.split("\n") sentence_embeddings = model.encode(sentences) mean = np.mean(sentence_embeddings, axis=0) mean = mean.astype(np.float64) return mean def cosine_similarity(a, b): return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))