import pytest import numpy as np from openrecall.nlp import cosine_similarity def test_cosine_similarity_identical_vectors(): a = np.array([1, 0, 0]) b = np.array([1, 0, 0]) assert cosine_similarity(a, b) == 1.0 def test_cosine_similarity_orthogonal_vectors(): a = np.array([1, 0, 0]) b = np.array([0, 1, 0]) assert cosine_similarity(a, b) == 0.0 def test_cosine_similarity_opposite_vectors(): a = np.array([1, 0, 0]) b = np.array([-1, 0, 0]) assert cosine_similarity(a, b) == -1.0 def test_cosine_similarity_non_unit_vectors(): a = np.array([3, 0, 0]) b = np.array([1, 0, 0]) assert cosine_similarity(a, b) == 1.0 def test_cosine_similarity_arbitrary_vectors(): a = np.array([1, 2, 3]) b = np.array([4, 5, 6]) expected_similarity = np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b)) assert cosine_similarity(a, b) == pytest.approx(expected_similarity) def test_cosine_similarity_zero_vector(): a = np.array([0, 0, 0]) b = np.array([1, 0, 0]) result = cosine_similarity(a, b) assert np.isnan(result), "Expected result to be NaN when one of the vectors is a zero vector"