diff --git a/tekshur.py b/tekshur.py deleted file mode 100644 index 60e1790..0000000 --- a/tekshur.py +++ /dev/null @@ -1,75 +0,0 @@ -import torch -from data import SpeechDataset, SpeechDataLoader, featurelen, uyghur_latin, cer -from GCGCResM import GCGCResM -from uformer import UFormer -from UDS2W2L50 import UDS2W2L50 -from UFormerCTC2 import UFormerCTC2 - -import sys -import os -import glob -from tqdm import tqdm - -def tekshurctc(model, hojjet, device): - training_set = SpeechDataset(hojjet, augumentation=False) - loader = SpeechDataLoader(training_set,num_workers=4, shuffle=False, batch_size=32) - - line = [] - with torch.no_grad(): - pbar = tqdm(iter(loader), leave=True, total=len(loader)) - for inputs, targets, input_lengths, _ , paths in pbar: - - inputs = inputs.to(device,non_blocking=True) - outputs, output_lengths = model(inputs, input_lengths) - preds = model.greedydecode(outputs, output_lengths) - targets = [uyghur_latin.decode(target) for target in targets] - - for pred, src, wavename in zip(preds, targets, paths): - xatasani , _ = cer(pred, src) - if xatasani >= 1: - xata = f"{wavename}\t{src}\t{xatasani}\n" - #xata = f"{src}\n{pred}\n\n" - line.append(xata) - return line - - -def tekshurs2s(model, hojjet, device): - training_set = SpeechDataset(hojjet, augumentation=False) - loader = SpeechDataLoader(training_set,num_workers=4, shuffle=False, batch_size=20) - - line = [] - with torch.no_grad(): - pbar = tqdm(iter(loader), leave=True, total=len(loader)) - for inputs, targets, input_lengths, _ , paths in pbar: - - inputs = inputs.to(device,non_blocking=True) - targets = targets.to(device,non_blocking=True) - input_lengths = input_lengths.to(device,non_blocking=True) - - outputs, _ = model(inputs, input_lengths, targets) - preds = model.greedydecode(outputs, 0) - targets = [uyghur_latin.decode(target) for target in targets] - - for pred, src, wavename in zip(preds, targets, paths): - xatasani , _ = cer(pred, src) - if xatasani >= 5: - xata = f"{wavename}\t{src}\t{xatasani}\n" - #xata = f"{src}\n{pred}\n\n" - line.append(xata) - return line - -if __name__ == '__main__': - device = 'cuda' - #model = GCGCResM(featurelen, load_best=False) - #model = UFormer(featurelen, load_best=False) - - model = UDS2W2L50(featurelen, load_best=False) - #model = UFormerCTC2(featurelen, load_best=False) - model.to(device) - model.eval() - - #'uyghur_train.csv' 'uyghur_thuyg20_train_small.csv', '' - #netije = tekshurs2s(model, 'uyghur_train.csv', device) - netije = tekshurctc(model, 'uyghur_thuyg20_test_small.csv', device) - with open('tek_test.csv','w',encoding='utf_8_sig') as f: - f.writelines(netije)