ref: re-organize project structure
This commit is contained in:
parent
1211aaae26
commit
3867f6172e
169
.gitignore
vendored
Normal file
169
.gitignore
vendored
Normal file
@ -0,0 +1,169 @@
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# C extensions
|
||||
*.so
|
||||
|
||||
# Distribution / packaging
|
||||
.Python
|
||||
build/
|
||||
develop-eggs/
|
||||
dist/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
var/
|
||||
wheels/
|
||||
share/python-wheels/
|
||||
*.egg-info/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
MANIFEST
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
htmlcov/
|
||||
.tox/
|
||||
.nox/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
nosetests.xml
|
||||
coverage.xml
|
||||
*.cover
|
||||
*.py,cover
|
||||
.hypothesis/
|
||||
.pytest_cache/
|
||||
cover/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
*.pot
|
||||
|
||||
# Django stuff:
|
||||
*.log
|
||||
local_settings.py
|
||||
db.sqlite3
|
||||
db.sqlite3-journal
|
||||
|
||||
# Flask stuff:
|
||||
instance/
|
||||
.webassets-cache
|
||||
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
.pybuilder/
|
||||
target/
|
||||
|
||||
# Jupyter Notebook
|
||||
.ipynb_checkpoints
|
||||
|
||||
# IPython
|
||||
profile_default/
|
||||
ipython_config.py
|
||||
|
||||
# pyenv
|
||||
# For a library or package, you might want to ignore these files since the code is
|
||||
# intended to run in multiple environments; otherwise, check them in:
|
||||
# .python-version
|
||||
|
||||
# pipenv
|
||||
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||
# install all needed dependencies.
|
||||
#Pipfile.lock
|
||||
|
||||
# poetry
|
||||
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
||||
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
||||
# commonly ignored for libraries.
|
||||
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
||||
#poetry.lock
|
||||
|
||||
# pdm
|
||||
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
||||
#pdm.lock
|
||||
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
||||
# in version control.
|
||||
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
||||
.pdm.toml
|
||||
.pdm-python
|
||||
.pdm-build/
|
||||
|
||||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
||||
__pypackages__/
|
||||
|
||||
# Celery stuff
|
||||
celerybeat-schedule
|
||||
celerybeat.pid
|
||||
|
||||
# SageMath parsed files
|
||||
*.sage.py
|
||||
|
||||
# Environments
|
||||
.env
|
||||
.venv
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
.spyproject
|
||||
|
||||
# Rope project settings
|
||||
.ropeproject
|
||||
|
||||
# mkdocs documentation
|
||||
/site
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
||||
.dmypy.json
|
||||
dmypy.json
|
||||
|
||||
# Pyre type checker
|
||||
.pyre/
|
||||
|
||||
# pytype static type analyzer
|
||||
.pytype/
|
||||
|
||||
# Cython debug symbols
|
||||
cython_debug/
|
||||
|
||||
# PyCharm
|
||||
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
||||
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
||||
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
||||
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||
#.idea/
|
||||
|
||||
# OS-specific
|
||||
.DS_Store
|
||||
|
||||
# Project Specific
|
||||
*.mp3
|
||||
results/
|
36
README.md
36
README.md
@ -1,35 +1,9 @@
|
||||
# Speech Recognition for Uyghur using deep learning
|
||||
Training:
|
||||
# Agnlash
|
||||
|
||||
this model using CTC loss for training.
|
||||
A ASR(Automatic Speech Recognition) model for Uyghur language.
|
||||
|
||||
Download [pretrained model](https://github.com/gheyret/uyghur-asr-ctc/releases/download/data/results.7z) and [dataset](https://github.com/gheyret/uyghur-asr-ctc/releases/download/data/thuyg20_data.7z).
|
||||
This project is forked from [uyghur-asr-ctc](https://github.com/gheyret/uyghur-asr-ctc/forks).
|
||||
|
||||
unzip results.7z and thuyg20_data.7z to the same folder where python source files located. then run:
|
||||
```
|
||||
python train.py
|
||||
```
|
||||
|
||||
Recognition:
|
||||
|
||||
for recognition download only pretrained model(results.7z). then run:
|
||||
|
||||
```
|
||||
python tonu.py test1.wav
|
||||
```
|
||||
result will be:
|
||||
```
|
||||
Model loaded: results/UModel_last.pth
|
||||
Best CER: 7.21%
|
||||
Trained: 473 epochs
|
||||
The model has 26,389,282 trainable parameters
|
||||
|
||||
======================
|
||||
Recognizing file .\test2.wav
|
||||
test2.wav -> bu öy eslide xotunining xush tebessumi oghlining omaq külküsi bilen güzel idi
|
||||
```
|
||||
|
||||
This project using
|
||||
|
||||
[**A free Uyghur speech database Released by CSLT@Tsinghua University & Xinjiang University**](http://www.openslr.org/22/)
|
||||
The Anglash is fine-tuned on the [CommonVoice](https://commonvoice.mozilla.org/) dataset which contains 313 hours of data.
|
||||
|
||||
The original project uses [**A free Uyghur speech database Released by CSLT@Tsinghua University & Xinjiang University**](http://www.openslr.org/22/). This dataset contains 22.45 hours of data.
|
||||
|
@ -162,12 +162,12 @@ if __name__ == "__main__":
|
||||
net = UModel(featurelen).to(device)
|
||||
#net.save(0)
|
||||
|
||||
text = net.predict("test1.wav",device)
|
||||
text = net.predict("./test/test1.wav",device)
|
||||
print(text)
|
||||
text = net.predict("test2.wav",device)
|
||||
text = net.predict("./test/test2.wav",device)
|
||||
print(text)
|
||||
|
||||
melf = melfuture("test3.wav")
|
||||
melf = melfuture("./test/test3.wav")
|
||||
melf.unsqueeze_(0)
|
||||
|
||||
conv0 = nn.Conv1d(featurelen,256,11,2, 5, 1)
|
||||
|
8
data.py
8
data.py
@ -17,10 +17,10 @@ window_len = fft_len
|
||||
window = "hann"
|
||||
hop_len = 200
|
||||
|
||||
white_noise,_=librosa.load('white.wav',sr=sample_rate, duration=15.0)
|
||||
perlin_noise,_=librosa.load('perlin.wav',sr=sample_rate, duration=15.0)
|
||||
cafe_noise, _ = librosa.load('cafe.wav',sr=sample_rate, duration=15.0)
|
||||
radio_noise, _ = librosa.load('radionoise.wav',sr=sample_rate, duration=15.0)
|
||||
white_noise,_=librosa.load('./assets/white.wav',sr=sample_rate, duration=15.0)
|
||||
perlin_noise,_=librosa.load('./assets/perlin.wav',sr=sample_rate, duration=15.0)
|
||||
cafe_noise, _ = librosa.load('./assets/cafe.wav',sr=sample_rate, duration=15.0)
|
||||
radio_noise, _ = librosa.load('./assets/radionoise.wav',sr=sample_rate, duration=15.0)
|
||||
|
||||
def addnoise(audio):
|
||||
rnd = random.random()
|
||||
|
6
requirements.txt
Normal file
6
requirements.txt
Normal file
@ -0,0 +1,6 @@
|
||||
librosa==0.9.2
|
||||
numpy==1.24.4
|
||||
scikit_learn==1.3.2
|
||||
torch==2.2.2
|
||||
tqdm==4.66.1
|
||||
umsc==0.3.0
|
10
tonu.py
10
tonu.py
@ -1,7 +1,11 @@
|
||||
import sys
|
||||
import os
|
||||
from data import featurelen
|
||||
from UModel import UModel
|
||||
from umsc import UgMultiScriptConverter
|
||||
source_script = 'UAS'
|
||||
target_script = 'ULS'
|
||||
converter = UgMultiScriptConverter(source_script, target_script)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
model = UModel(featurelen)
|
||||
@ -12,6 +16,6 @@ if __name__ == '__main__':
|
||||
device = 'cpu'
|
||||
model.to(device)
|
||||
audiofile = sys.argv[1]
|
||||
print(f"\n======================\nRecognizing file {audiofile}")
|
||||
txt = model.predict(audiofile,device)
|
||||
print("%s -> %s" %(os.path.basename(audiofile),txt))
|
||||
script = converter(txt)
|
||||
print(script)
|
||||
|
9
train.py
9
train.py
@ -128,7 +128,7 @@ def train(model, train_loader):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
device = "cuda"
|
||||
device = "mps"
|
||||
|
||||
os.makedirs('./results',exist_ok=True)
|
||||
|
||||
@ -167,9 +167,10 @@ if __name__ == "__main__":
|
||||
torch.cuda.empty_cache()
|
||||
model.eval()
|
||||
msg = ""
|
||||
for afile in testfile:
|
||||
text = model.predict(afile,device)
|
||||
text = f"{afile}-->{text}\n"
|
||||
for file in testfile:
|
||||
file = "./test/" + file
|
||||
text = model.predict(file,device)
|
||||
text = f"{file}-->{text}\n"
|
||||
print(text,end="")
|
||||
msg += text
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user