Delete UDS2W2LGLU.py
This commit is contained in:
parent
1c6fa107dc
commit
4f5de90f7c
132
UDS2W2LGLU.py
132
UDS2W2LGLU.py
@ -1,132 +0,0 @@
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn.functional import log_softmax
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.parameter import Parameter
|
||||
from data import melfuture
|
||||
from uyghur import uyghur_latin
|
||||
from BaseModel import BaseModel
|
||||
|
||||
|
||||
class UDS2W2LGLU(BaseModel):
|
||||
def __init__(self,num_features_input,load_best=False):
|
||||
super(UDS2W2LGLU, self).__init__('UDS2W2LGLU')
|
||||
self.smoothing = 0.01
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(1, 32, kernel_size=(41, 11), stride=(2, 2), padding=(20, 5), bias=False),
|
||||
nn.BatchNorm2d(32),
|
||||
nn.Hardtanh(0, 20, inplace=True),
|
||||
nn.Conv2d(32, 32, kernel_size=(21, 11), stride=(2, 1), padding=(10, 5),bias=False),
|
||||
nn.BatchNorm2d(32),
|
||||
nn.Hardtanh(0, 20, inplace=True),
|
||||
)
|
||||
self.lstm1 = nn.GRU(1024, 256, num_layers=1 , batch_first=True, bidirectional=True)
|
||||
self.cnn1 = nn.Sequential(
|
||||
nn.Conv1d(256, 256*2, 11, 2, 5,bias=False),
|
||||
nn.BatchNorm1d(256*2),
|
||||
nn.GLU(dim=1),
|
||||
nn.Dropout(0.2),
|
||||
ResBGLU(256,11,5,0.2),
|
||||
ResBGLU(256,11,5,0.2),
|
||||
ResBGLU(256,11,5,0.2),
|
||||
ResBGLU(256,11,5,0.2)
|
||||
)
|
||||
self.lstm2 = nn.GRU(256, 384, num_layers=1 , batch_first=True, bidirectional=True)
|
||||
self.cnn2 = nn.Sequential(
|
||||
ResBGLU(384,13,6,0.2),
|
||||
ResBGLU(384,13,6,0.2),
|
||||
ResBGLU(384,13,6,0.2),
|
||||
nn.Conv1d(384, 512*2, 17, 1,8,bias=False),
|
||||
nn.BatchNorm1d(512*2),
|
||||
nn.GLU(dim=1),
|
||||
nn.Dropout(0.2),
|
||||
ResBGLU(512,17,8,0.3),
|
||||
ResBGLU(512,17,8,0.3),
|
||||
nn.Conv1d(512, 1024*2, 1, 1,bias=False),
|
||||
nn.BatchNorm1d(1024*2),
|
||||
nn.GLU(dim=1),
|
||||
nn.Dropout(0.3),
|
||||
ResBGLU(1024,1,0,0.0),
|
||||
)
|
||||
self.outlayer = nn.Conv1d(1024, uyghur_latin.vocab_size, 1, 1)
|
||||
self.softMax = nn.LogSoftmax(dim=1)
|
||||
|
||||
self.checkpoint = 'results/' + self.ModelName
|
||||
self._load(load_best)
|
||||
print(f'The model has {self.parameters_count(self):,} trainable parameters')
|
||||
|
||||
|
||||
def smooth_labels(self, x):
|
||||
sl = x.size(1)
|
||||
return (1.0 - self.smoothing) * x + self.smoothing / sl
|
||||
|
||||
def forward(self, x, lengths):
|
||||
out_lens = lengths//2
|
||||
|
||||
x.unsqueeze_(1)
|
||||
out = self.conv(x)
|
||||
|
||||
b, c, h, w = out.size()
|
||||
out = out.view(b, c*h, w).contiguous() #.permute(0,2,1)
|
||||
|
||||
out = out.permute(0,2,1)
|
||||
out = nn.utils.rnn.pack_padded_sequence(out, out_lens, batch_first=True)
|
||||
out, _ = self.lstm1(out)
|
||||
out, _ = nn.utils.rnn.pad_packed_sequence(out, batch_first=True)
|
||||
|
||||
out = (out[:, :, :self.lstm1.hidden_size] + out[:, :, self.lstm1.hidden_size:]).contiguous()
|
||||
out = self.cnn1(out.permute(0,2,1))
|
||||
|
||||
out_lens = out_lens//2
|
||||
out = out.permute(0,2,1)
|
||||
out = nn.utils.rnn.pack_padded_sequence(out, out_lens, batch_first=True)
|
||||
out,_ = self.lstm2(out)
|
||||
out, _ = nn.utils.rnn.pad_packed_sequence(out, batch_first=True)
|
||||
|
||||
out = (out[:, :, :self.lstm2.hidden_size] + out[:, :, self.lstm2.hidden_size:]).contiguous()
|
||||
out = self.cnn2(out.permute(0,2,1))
|
||||
out = self.outlayer(out)
|
||||
#out = self.smooth_labels(out)
|
||||
out = self.softMax(out)
|
||||
return out, out_lens
|
||||
|
||||
|
||||
class ResBGLU(nn.Module):
|
||||
def __init__(self, num_filters, kernel, pad, d = 0.4):
|
||||
super().__init__()
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv1d(num_filters, num_filters*2, kernel_size = kernel, stride = 1 , padding=pad, bias=False),
|
||||
nn.BatchNorm1d(num_filters*2),
|
||||
nn.GLU(dim=1)
|
||||
)
|
||||
|
||||
self.fc = nn.Sequential(
|
||||
nn.BatchNorm1d(num_filters),
|
||||
nn.ReLU(),
|
||||
nn.Dropout(d)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
identity = x
|
||||
out = self.conv(x)
|
||||
out += identity
|
||||
out = self.fc(out)
|
||||
return out
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from data import featurelen, melfuture
|
||||
device ="cpu"
|
||||
|
||||
net = UDS2W2LGLU(featurelen).to(device)
|
||||
text = net.predict("test1.wav",device)
|
||||
print(text)
|
||||
text = net.predict("test2.wav",device)
|
||||
print(text)
|
||||
|
||||
|
||||
#net.best_cer = 1.0
|
||||
#net.save(78)
|
||||
|
Loading…
Reference in New Issue
Block a user