agnlash/data.py

200 lines
5.9 KiB
Python

import pandas as pd
import torch
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
import librosa
from sklearn import preprocessing
import os
import random
from uyghur import uyghur_latin
import numpy as np
featurelen = 128 #melspec, 60 #mfcc
sample_rate = 22050
fft_len = 1024
window_len = fft_len
window = "hann"
hop_len = 200
white_noise,_=librosa.load('./assets/white.wav',sr=sample_rate, duration=15.0)
perlin_noise,_=librosa.load('./assets/perlin.wav',sr=sample_rate, duration=15.0)
cafe_noise, _ = librosa.load('./assets/cafe.wav',sr=sample_rate, duration=15.0)
radio_noise, _ = librosa.load('./assets/radionoise.wav',sr=sample_rate, duration=15.0)
def addnoise(audio):
rnd = random.random()
if len(audio) > len(white_noise):
pass
elif rnd <0.25:
audio = audio + white_noise[:len(audio)]
elif rnd <0.50:
audio = audio + perlin_noise[:audio.shape[0]]
elif rnd <0.75:
audio = audio + radio_noise[:audio.shape[0]]
else:
audio = audio + cafe_noise[:audio.shape[0]]
return audio
def randomstretch(audio):
factor = random.uniform(0.8, 1.2)
audio = librosa.core.resample(audio, orig_sr=sample_rate, target_sr=sample_rate*factor)
return audio
#def spec_augment(feat, T=70, F=15, time_mask_num=1, freq_mask_num=1):
def spec_augment(feat, T=50, F=13, time_mask_num=1, freq_mask_num=1):
rnd = random.random()
feat_size = feat.size(0)
seq_len = feat.size(1)
if rnd< 0.33:
# time mask
for _ in range(time_mask_num):
t = random.randint(0, T)
t0 = random.randint(0, seq_len - t)
feat[:, t0 : t0 + t] = 0
elif rnd <0.66:
# freq mask
for _ in range(freq_mask_num):
f = random.randint(0, F)
f0 = random.randint(0, feat_size - f)
feat[f0 : f0 + f, :] = 0
else:
# time mask
for _ in range(time_mask_num):
t = random.randint(0, T)
t0 = random.randint(0, seq_len - t)
feat[:, t0 : t0 + t] = 0
# freq mask
for _ in range(freq_mask_num):
f = random.randint(0, F)
f0 = random.randint(0, feat_size - f)
feat[f0 : f0 + f, :] = 0
return feat
def melfuture(wav_path, augument = False):
audio, s_r = librosa.load(wav_path, sr=sample_rate, res_type='polyphase')
if augument:
if random.random()<0.5:
audio = randomstretch(audio)
if random.random()<0.5:
audio = addnoise(audio)
audio = preprocessing.minmax_scale(audio, axis=0)
audio = librosa.effects.preemphasis(audio)
spec = librosa.feature.melspectrogram(y=audio, sr=s_r, n_fft=fft_len, hop_length=hop_len, n_mels=featurelen, fmax=8000)
spec = librosa.power_to_db(spec)
#spec = librosa.amplitude_to_db(spec)
spec = (spec - spec.mean()) / spec.std()
spec = torch.FloatTensor(spec)
if augument and random.random()<0.5:
spec = spec_augment(spec)
return spec
class SpeechDataset(Dataset):
def __init__(self, index_path, augumentation = False):
self.Raw = False
self.idx = []
df = pd.read_csv(index_path)
for _, row in df.iterrows():
path = row['path']
sentence = row['script']
if not os.path.exists(path):
continue
line = []
line.append(path)
char_indx = uyghur_latin.encode(sentence)
line.append(char_indx)
self.idx.append(line)
self.augument = augumentation
def __getitem__(self, index):
wav_path, char_index = self.idx[index]
x = melfuture(wav_path, self.augument)
return x, char_index, wav_path
def __len__(self):
return len(self.idx)
def _collate_fn(batch):
input_lens = [sample[0].size(1) for sample in batch]
target_lens = [len(sample[1]) for sample in batch]
inputs = torch.zeros(len(batch), batch[0][0].size(0), max(input_lens) ,dtype=torch.float32)
targets = torch.zeros(len(batch), max(target_lens),dtype=torch.long).fill_(uyghur_latin.pad_idx)
target_lens = torch.IntTensor(target_lens)
input_lens = torch.IntTensor(input_lens)
paths = []
for x, sample in enumerate(batch):
tensor = sample[0]
target = sample[1]
seq_length = tensor.size(1)
inputs[x].narrow(1, 0, seq_length).copy_(tensor)
targets[x][:len(target)] = torch.LongTensor(target)
paths.append(sample[2])
return inputs, targets, input_lens, target_lens, paths
class SpeechDataLoader(DataLoader):
def __init__(self, *args, **kwargs):
"""
Creates a data loader for AudioDatasets.
"""
super(SpeechDataLoader, self).__init__(*args, **kwargs)
self.collate_fn = _collate_fn
# The following code is from: http://hetland.org/coding/python/levenshtein.py
def levenshtein(a,b):
"Calculates the Levenshtein distance between a and b."
n, m = len(a), len(b)
if n > m:
# Make sure n <= m, to use O(min(n,m)) space
a,b = b,a
n,m = m,n
current = list(range(n+1))
for i in range(1,m+1):
previous, current = current, [i]+[0]*n
for j in range(1,n+1):
add, delete = previous[j]+1, current[j-1]+1
change = previous[j-1]
if a[j-1] != b[i-1]:
change = change + 1
current[j] = min(add, delete, change)
return current[n]
def wer(s1, src):
sw = src.split()
return levenshtein(s1.split(),sw), len(sw)
def cer(s1, src):
return levenshtein(s1,src),len(src)
def cer_wer(preds, targets):
err_c, lettercnt, err_w, wordcnt = 0,0,0,0
for pred, target in zip(preds, targets):
c_er, c_cnt = cer(pred, target)
w_er, w_cnt = wer(pred, target)
err_c += c_er
lettercnt += c_cnt
wordcnt += w_cnt
err_w += w_er
return err_c, lettercnt, err_w, wordcnt