Speech Recognition for Uyghur using deep learning
Go to file
2021-06-17 15:27:58 +09:00
cafe.wav Add files via upload 2021-06-14 16:56:51 +09:00
data.py Add files via upload 2021-06-14 16:56:51 +09:00
perlin.wav Add files via upload 2021-06-14 16:56:51 +09:00
radionoise.wav Add files via upload 2021-06-14 16:56:51 +09:00
README.md Update README.md 2021-06-17 15:27:58 +09:00
silence.wav Add files via upload 2021-06-14 16:56:51 +09:00
test1.wav Add files via upload 2021-06-14 16:56:51 +09:00
test2.wav Add files via upload 2021-06-14 16:56:51 +09:00
test3.wav Add files via upload 2021-06-14 16:56:51 +09:00
test4.wav Add files via upload 2021-06-14 16:56:51 +09:00
test5.wav Add files via upload 2021-06-14 16:56:51 +09:00
test6.wav Add files via upload 2021-06-14 16:56:51 +09:00
thuyg20_test.csv Add files via upload 2021-06-14 16:56:51 +09:00
thuyg20_train.csv Add files via upload 2021-06-14 16:56:51 +09:00
tonu.py Add files via upload 2021-06-17 15:16:55 +09:00
train.py Add files via upload 2021-06-14 16:56:51 +09:00
UModel.py Add files via upload 2021-06-14 16:56:51 +09:00
uyghur.py Add files via upload 2021-06-14 16:56:51 +09:00
white.wav Add files via upload 2021-06-14 16:56:51 +09:00

Speech Recognition for Uyghur using deep learning

Training:

this model using CTC loss for training.

Download pretrained model and dataset from https://github.com/gheyret/uyghur-asr-ctc/releases. unzip results.7z and thuyg20_data.7z to the same folder where python source files located. then run:

python train.py

Recognition: for recognition download only pretrained model(results.7z). then run:

python tonu.py test1.wav 

result will be:

        Model loaded: results/UModel_last.pth
            Best CER: 7.21%
             Trained: 473 epochs
The model has 26,389,282 trainable parameters

======================
Recognizing file .\test2.wav
test2.wav -> bu öy eslide xotunining xush tebessumi oghlining omaq külküsi bilen güzel idi

This project using

A free Uyghur speech database Released by CSLT@Tsinghua University & Xinjiang University(http://www.openslr.org/22/)