add: the V6.1 filter model
This commit is contained in:
parent
2a2e65804f
commit
0ed59f60d0
@ -31,10 +31,8 @@ def prepare_batch(batch_data, device="cpu"):
|
||||
return batch_tensor
|
||||
|
||||
import onnxruntime as ort
|
||||
from transformers import AutoTokenizer
|
||||
from itertools import accumulate
|
||||
|
||||
def prepare_batch_per_token(batch_data, max_length=1024):
|
||||
def prepare_batch_per_token(session, tokenizer, batch_data, max_length=1024):
|
||||
"""
|
||||
将输入的 batch_data 转换为模型所需的输入格式 [batch_size, num_channels, seq_length, embedding_dim]。
|
||||
|
||||
@ -42,69 +40,33 @@ def prepare_batch_per_token(batch_data, max_length=1024):
|
||||
batch_data (dict): 输入的 batch 数据,格式为 {
|
||||
"title": [text1, text2, ...],
|
||||
"description": [text1, text2, ...],
|
||||
"tags": [text1, text2, ...],
|
||||
"author_info": [text1, text2, ...]
|
||||
"tags": [text1, text2, ...]
|
||||
}
|
||||
max_length (int): 最大序列长度。
|
||||
|
||||
返回:
|
||||
torch.Tensor: 形状为 [batch_size, num_channels, seq_length, embedding_dim] 的张量。
|
||||
torch.Tensor: 形状为 [batch_size, num_channels, max_length, embedding_dim] 的张量。
|
||||
"""
|
||||
# 初始化 tokenizer 和 ONNX 模型
|
||||
tokenizer = AutoTokenizer.from_pretrained("alikia2x/jina-embedding-v3-m2v-1024")
|
||||
session = ort.InferenceSession("./model/embedding_256/onnx/model.onnx")
|
||||
|
||||
# 1. 对每个通道的文本分别编码
|
||||
channel_embeddings = []
|
||||
for channel in ["title", "description", "tags", "author_info"]:
|
||||
texts = batch_data[channel] # 获取当前通道的文本列表
|
||||
batch_size = len(batch_data["title"])
|
||||
batch_tensor = torch.zeros(batch_size, 3, max_length, 256)
|
||||
for i in range(batch_size):
|
||||
channel_embeddings = torch.zeros((3, 1024, 256))
|
||||
for j, channel in enumerate(["title", "description", "tags"]):
|
||||
# 获取当前通道的文本
|
||||
text = batch_data[channel][i]
|
||||
encoded_inputs = tokenizer(text, truncation=True, max_length=max_length, return_tensors='np')
|
||||
|
||||
# Step 1: 生成 input_ids 和 offsets
|
||||
# 对每个文本单独编码,保留原始 token 长度
|
||||
encoded_inputs = [tokenizer(text, truncation=True, max_length=max_length, return_tensors='np') for text in texts]
|
||||
# embeddings: [max_length, embedding_dim]
|
||||
embeddings = torch.zeros((1024, 256))
|
||||
for idx, token in enumerate(encoded_inputs['input_ids'][0]):
|
||||
inputs = {
|
||||
"input_ids": ort.OrtValue.ortvalue_from_numpy(np.array([token])),
|
||||
"offsets": ort.OrtValue.ortvalue_from_numpy(np.array([0], dtype=np.int64))
|
||||
}
|
||||
output = session.run(None, inputs)[0]
|
||||
embeddings[idx] = torch.from_numpy(output)
|
||||
channel_embeddings[j] = embeddings
|
||||
batch_tensor[i] = channel_embeddings
|
||||
|
||||
# 提取每个文本的 input_ids 长度(考虑实际的 token 数量)
|
||||
input_ids_lengths = [len(enc["input_ids"][0]) for enc in encoded_inputs]
|
||||
|
||||
# 生成 offsets: [0, len1, len1+len2, ...]
|
||||
offsets = list(accumulate([0] + input_ids_lengths[:-1])) # 累积和,排除最后一个长度
|
||||
|
||||
# 将所有 input_ids 展平为一维数组
|
||||
flattened_input_ids = np.concatenate([enc["input_ids"][0] for enc in encoded_inputs], axis=0).astype(np.int64)
|
||||
|
||||
# Step 2: 构建 ONNX 输入
|
||||
inputs = {
|
||||
"input_ids": ort.OrtValue.ortvalue_from_numpy(flattened_input_ids),
|
||||
"offsets": ort.OrtValue.ortvalue_from_numpy(np.array(offsets, dtype=np.int64))
|
||||
}
|
||||
|
||||
# Step 3: 运行 ONNX 模型
|
||||
embeddings = session.run(None, inputs)[0] # 假设输出名为 "embeddings"
|
||||
|
||||
# Step 4: 将输出重塑为 [batch_size, seq_length, embedding_dim]
|
||||
# 注意:这里假设 ONNX 输出的形状是 [total_tokens, embedding_dim]
|
||||
# 需要根据实际序列长度重新分组
|
||||
batch_size = len(texts)
|
||||
embeddings_split = np.split(embeddings, np.cumsum(input_ids_lengths[:-1]))
|
||||
padded_embeddings = []
|
||||
for emb, seq_len in zip(embeddings_split, input_ids_lengths):
|
||||
# 对每个序列填充到 max_length
|
||||
if seq_len > max_length:
|
||||
# 如果序列长度超过 max_length,截断
|
||||
emb = emb[:max_length]
|
||||
pad_length = 0
|
||||
else:
|
||||
# 否则填充到 max_length
|
||||
pad_length = max_length - seq_len
|
||||
|
||||
# 填充到 [max_length, embedding_dim]
|
||||
padded = np.pad(emb, ((0, pad_length), (0, 0)), mode='constant')
|
||||
padded_embeddings.append(padded)
|
||||
|
||||
# 确保所有填充后的序列形状一致
|
||||
embeddings_tensor = torch.tensor(np.stack(padded_embeddings), dtype=torch.float32)
|
||||
channel_embeddings.append(embeddings_tensor)
|
||||
|
||||
# 2. 将编码结果堆叠为 [batch_size, num_channels, seq_length, embedding_dim]
|
||||
batch_tensor = torch.stack(channel_embeddings, dim=1)
|
||||
return batch_tensor
|
@ -5,8 +5,8 @@ import torch.nn.functional as F
|
||||
class VideoClassifierV6_0(nn.Module):
|
||||
def __init__(self, embedding_dim=256, seq_length=1024, hidden_dim=512, output_dim=3):
|
||||
super().__init__()
|
||||
self.num_channels = 4
|
||||
self.channel_names = ['title', 'description', 'tags', 'author_info']
|
||||
self.num_channels = 3
|
||||
self.channel_names = ['title', 'description', 'tags']
|
||||
|
||||
# CNN特征提取层
|
||||
self.conv_layers = nn.Sequential(
|
||||
@ -66,28 +66,3 @@ class VideoClassifierV6_0(nn.Module):
|
||||
|
||||
# 全连接层分类
|
||||
return self.fc(flat_features)
|
||||
|
||||
# 损失函数保持不变
|
||||
class AdaptiveRecallLoss(nn.Module):
|
||||
def __init__(self, class_weights, alpha=0.8, gamma=2.0, fp_penalty=0.5):
|
||||
super().__init__()
|
||||
self.class_weights = class_weights
|
||||
self.alpha = alpha
|
||||
self.gamma = gamma
|
||||
self.fp_penalty = fp_penalty
|
||||
|
||||
def forward(self, logits, targets):
|
||||
ce_loss = F.cross_entropy(logits, targets, weight=self.class_weights, reduction='none')
|
||||
pt = torch.exp(-ce_loss)
|
||||
focal_loss = ((1 - pt) ** self.gamma) * ce_loss
|
||||
|
||||
class_mask = F.one_hot(targets, num_classes=len(self.class_weights))
|
||||
class_weights = (self.alpha + (1 - self.alpha) * pt.unsqueeze(-1)) * class_mask
|
||||
recall_loss = (class_weights * focal_loss.unsqueeze(-1)).sum(dim=1)
|
||||
|
||||
probs = F.softmax(logits, dim=1)
|
||||
fp_mask = (targets != 0) & (torch.argmax(logits, dim=1) == 0)
|
||||
fp_loss = self.fp_penalty * probs[:, 0][fp_mask].pow(2).sum()
|
||||
|
||||
total_loss = recall_loss.mean() + fp_loss / len(targets)
|
||||
return total_loss
|
108
filter/modelV6_1.py
Normal file
108
filter/modelV6_1.py
Normal file
@ -0,0 +1,108 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
class VideoClassifierV6_1(nn.Module):
|
||||
def __init__(self, embedding_dim=256, seq_length=1024, hidden_dim=256, output_dim=3, num_heads=4):
|
||||
super().__init__()
|
||||
self.num_channels = 3
|
||||
self.channel_names = ['title', 'description', 'tags']
|
||||
self.embedding_dim = embedding_dim
|
||||
self.hidden_dim = hidden_dim # 每个通道处理后的特征维度
|
||||
|
||||
# 通道独立处理模块(每个通道独立的Transformer编码器)
|
||||
self.channel_processors = nn.ModuleList()
|
||||
for _ in range(self.num_channels):
|
||||
self.channel_processors.append(
|
||||
nn.Sequential(
|
||||
# 自注意力层
|
||||
nn.MultiheadAttention(
|
||||
embed_dim=embedding_dim,
|
||||
num_heads=num_heads,
|
||||
dropout=0.1
|
||||
),
|
||||
# 层归一化和前馈网络
|
||||
nn.LayerNorm(embedding_dim),
|
||||
nn.Linear(embedding_dim, hidden_dim),
|
||||
nn.GELU(),
|
||||
nn.Linear(hidden_dim, hidden_dim),
|
||||
nn.LayerNorm(hidden_dim)
|
||||
)
|
||||
)
|
||||
|
||||
# 通道权重(可学习,Sigmoid约束)
|
||||
self.channel_weights = nn.Parameter(torch.ones(self.num_channels))
|
||||
|
||||
# 全连接层(扩展维度)
|
||||
self.fc = nn.Sequential(
|
||||
nn.Linear(self.num_channels * hidden_dim, 1024), # 拼接后的特征维度
|
||||
nn.BatchNorm1d(1024),
|
||||
nn.Dropout(0.2),
|
||||
nn.GELU(),
|
||||
nn.Linear(1024, 512),
|
||||
nn.BatchNorm1d(512),
|
||||
nn.Dropout(0.2),
|
||||
nn.GELU(),
|
||||
nn.Linear(512, output_dim)
|
||||
)
|
||||
|
||||
self._init_weights()
|
||||
|
||||
def _init_weights(self):
|
||||
"""权重初始化(Xavier初始化)"""
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Linear):
|
||||
nn.init.xavier_uniform_(m.weight)
|
||||
if m.bias is not None:
|
||||
nn.init.zeros_(m.bias)
|
||||
elif isinstance(m, nn.MultiheadAttention):
|
||||
# 初始化MultiheadAttention的参数(输入投影和输出投影)
|
||||
for name, param in m.named_parameters():
|
||||
if "in_proj" in name or "out_proj" in name:
|
||||
if "weight" in name:
|
||||
nn.init.xavier_uniform_(param)
|
||||
elif "bias" in name:
|
||||
nn.init.zeros_(param)
|
||||
elif isinstance(m, nn.LayerNorm):
|
||||
nn.init.ones_(m.weight)
|
||||
|
||||
def forward(self, channel_features: torch.Tensor):
|
||||
"""
|
||||
输入格式: [batch_size, num_channels, seq_length, embedding_dim]
|
||||
输出格式: [batch_size, output_dim]
|
||||
"""
|
||||
batch_size = channel_features.size(0)
|
||||
processed_channels = []
|
||||
|
||||
for c in range(self.num_channels):
|
||||
# 提取当前通道的特征 [B, S, E]
|
||||
c_data = channel_features[:, c]
|
||||
# 转置为 [S, B, E] 以适配MultiheadAttention
|
||||
c_data = c_data.permute(1, 0, 2)
|
||||
|
||||
# 通道独立处理
|
||||
x = c_data
|
||||
for layer in self.channel_processors[c]:
|
||||
if isinstance(layer, nn.MultiheadAttention):
|
||||
# 自注意力层需要显式提供键、值
|
||||
x = layer(x, x, x)[0]
|
||||
else:
|
||||
x = layer(x)
|
||||
# 转回 [B, S, hidden_dim]
|
||||
x = x.permute(1, 0, 2)
|
||||
# 全局池化(序列维度平均)
|
||||
pooled = x.mean(dim=1) # [B, hidden_dim]
|
||||
processed_channels.append(pooled)
|
||||
|
||||
# 堆叠通道特征 [B, C, hidden_dim]
|
||||
processed_channels = torch.stack(processed_channels, dim=1)
|
||||
|
||||
# 应用通道权重(Sigmoid约束)
|
||||
weights = torch.sigmoid(self.channel_weights).unsqueeze(0).unsqueeze(-1) # [1, C, 1]
|
||||
weighted_features = processed_channels * weights # [B, C, hidden_dim]
|
||||
|
||||
# 拼接所有通道特征
|
||||
combined = weighted_features.view(batch_size, -1) # [B, C*hidden_dim]
|
||||
|
||||
# 全连接层分类
|
||||
return self.fc(combined)
|
@ -4,14 +4,16 @@ import numpy as np
|
||||
from torch.utils.data import DataLoader
|
||||
import torch.optim as optim
|
||||
from dataset import MultiChannelDataset
|
||||
from filter.modelV3_15 import AdaptiveRecallLoss, VideoClassifierV3_15
|
||||
from filter.modelV6_1 import VideoClassifierV6_1
|
||||
from sklearn.metrics import f1_score, recall_score, precision_score, accuracy_score, classification_report
|
||||
import os
|
||||
import torch
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
import time
|
||||
from embedding import prepare_batch
|
||||
import torch.nn as nn
|
||||
from embedding import prepare_batch_per_token
|
||||
import onnxruntime as ort
|
||||
from transformers import AutoTokenizer
|
||||
from torch import nn
|
||||
|
||||
|
||||
run_name = f"run_{time.strftime('%Y%m%d_%H%M')}"
|
||||
@ -24,6 +26,8 @@ writer = SummaryWriter(log_dir=log_dir)
|
||||
train_dataset = MultiChannelDataset('./data/filter/labeled_data.jsonl', mode='train')
|
||||
eval_dataset = MultiChannelDataset('./data/filter/labeled_data.jsonl', mode='eval')
|
||||
|
||||
samples_count = len(train_dataset)
|
||||
|
||||
# 加载test数据集
|
||||
test_file = './data/filter/test.jsonl'
|
||||
if not os.path.exists(test_file):
|
||||
@ -50,21 +54,26 @@ class_weights = torch.tensor(
|
||||
device='cpu'
|
||||
)
|
||||
|
||||
# 初始化模型和SentenceTransformer
|
||||
model = VideoClassifierV3_15()
|
||||
checkpoint_name = './filter/checkpoints/best_model_V3.17.pt'
|
||||
model = VideoClassifierV6_1()
|
||||
checkpoint_name = './filter/checkpoints/best_model_V6.2-test2.pt'
|
||||
|
||||
# 初始化tokenizer和embedding模型
|
||||
tokenizer = AutoTokenizer.from_pretrained("alikia2x/jina-embedding-v3-m2v-1024")
|
||||
session = ort.InferenceSession("./model/embedding_256/onnx/model.onnx")
|
||||
|
||||
# 模型保存路径
|
||||
os.makedirs('./filter/checkpoints', exist_ok=True)
|
||||
|
||||
# 优化器
|
||||
optimizer = optim.AdamW(model.parameters(), lr=4e-4)
|
||||
criterion = AdaptiveRecallLoss(
|
||||
class_weights=class_weights,
|
||||
alpha=0.9, # 召回率权重
|
||||
gamma=1.6, # 困难样本聚焦
|
||||
fp_penalty=0.8 # 假阳性惩罚强度
|
||||
)
|
||||
eval_interval = 20
|
||||
num_epochs = 20
|
||||
total_steps = samples_count * num_epochs / train_loader.batch_size
|
||||
warmup_rate = 0.1
|
||||
optimizer = optim.AdamW(model.parameters(), lr=1e-4, weight_decay=1e-5)
|
||||
cosine_annealing_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=total_steps - int(total_steps * warmup_rate))
|
||||
warmup_scheduler = optim.lr_scheduler.LinearLR(optimizer, start_factor=0.1, end_factor=1.0, total_iters=int(total_steps * warmup_rate))
|
||||
scheduler = optim.lr_scheduler.SequentialLR(optimizer, schedulers=[warmup_scheduler, cosine_annealing_scheduler], milestones=[int(total_steps * warmup_rate)])
|
||||
criterion = nn.CrossEntropyLoss(weight=class_weights)
|
||||
|
||||
def count_trainable_parameters(model):
|
||||
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|
||||
@ -76,7 +85,7 @@ def evaluate(model, dataloader):
|
||||
|
||||
with torch.no_grad():
|
||||
for batch in dataloader:
|
||||
batch_tensor = prepare_batch(batch['texts'])
|
||||
batch_tensor = prepare_batch_per_token(session, tokenizer, batch['texts'])
|
||||
logits = model(batch_tensor)
|
||||
preds = torch.argmax(logits, dim=1)
|
||||
all_preds.extend(preds.cpu().numpy())
|
||||
@ -98,8 +107,6 @@ print(f"Trainable parameters: {count_trainable_parameters(model)}")
|
||||
# 训练循环
|
||||
best_f1 = 0
|
||||
step = 0
|
||||
eval_interval = 20
|
||||
num_epochs = 8
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
model.train()
|
||||
@ -109,7 +116,8 @@ for epoch in range(num_epochs):
|
||||
for batch_idx, batch in enumerate(train_loader):
|
||||
optimizer.zero_grad()
|
||||
|
||||
batch_tensor = prepare_batch(batch['texts'])
|
||||
|
||||
batch_tensor = prepare_batch_per_token(session, tokenizer, batch['texts'])
|
||||
|
||||
logits = model(batch_tensor)
|
||||
|
||||
@ -142,7 +150,8 @@ for epoch in range(num_epochs):
|
||||
best_f1 = eval_f1
|
||||
torch.save(model.state_dict(), checkpoint_name)
|
||||
print(" Saved best model")
|
||||
print("Channel weights: ", model.get_channel_weights())
|
||||
scheduler.step()
|
||||
writer.add_scalar('Train/LR', scheduler.get_last_lr()[0], step)
|
||||
|
||||
# 记录每个 epoch 的平均训练损失
|
||||
avg_epoch_loss = epoch_loss / len(train_loader)
|
||||
|
Loading…
Reference in New Issue
Block a user