update: adjust LR, grad accumulate
This commit is contained in:
parent
e2d8394bf0
commit
11ec3e8295
@ -33,4 +33,6 @@ Note
|
|||||||
0128: V6.1 # Transformer模型(交叉熵损失)
|
0128: V6.1 # Transformer模型(交叉熵损失)
|
||||||
0219: V6.1 # MPS训练
|
0219: V6.1 # MPS训练
|
||||||
0242: V6.1 # 自定义loss
|
0242: V6.1 # 自定义loss
|
||||||
0259: V6.1 # 调整学习率
|
0259: V6.1 # 调整学习率 (自定义loss)
|
||||||
|
0314: V6.1 # 调整学习率(交叉熵损失)
|
||||||
|
0349: V6.3 # 增加层数至2
|
@ -32,7 +32,7 @@ def prepare_batch(batch_data, device="cpu"):
|
|||||||
|
|
||||||
import onnxruntime as ort
|
import onnxruntime as ort
|
||||||
|
|
||||||
def prepare_batch_per_token(session, tokenizer, batch_data, device = 'cpu', max_length=1024):
|
def prepare_batch_per_token(session, tokenizer, batch_data, device = 'cpu', max_length=1024, embedding_dim=256):
|
||||||
"""
|
"""
|
||||||
将输入的 batch_data 转换为模型所需的输入格式 [batch_size, num_channels, seq_length, embedding_dim]。
|
将输入的 batch_data 转换为模型所需的输入格式 [batch_size, num_channels, seq_length, embedding_dim]。
|
||||||
|
|
||||||
@ -49,16 +49,16 @@ def prepare_batch_per_token(session, tokenizer, batch_data, device = 'cpu', max_
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
batch_size = len(batch_data["title"])
|
batch_size = len(batch_data["title"])
|
||||||
batch_tensor = torch.zeros(batch_size, 3, max_length, 256, device=device)
|
batch_tensor = torch.zeros(batch_size, 3, max_length, embedding_dim, device=device)
|
||||||
for i in range(batch_size):
|
for i in range(batch_size):
|
||||||
channel_embeddings = torch.zeros((3, 1024, 256), device=device)
|
channel_embeddings = torch.zeros((3, 1024, embedding_dim), device=device)
|
||||||
for j, channel in enumerate(["title", "description", "tags"]):
|
for j, channel in enumerate(["title", "description", "tags"]):
|
||||||
# 获取当前通道的文本
|
# 获取当前通道的文本
|
||||||
text = batch_data[channel][i]
|
text = batch_data[channel][i]
|
||||||
encoded_inputs = tokenizer(text, truncation=True, max_length=max_length, return_tensors='np')
|
encoded_inputs = tokenizer(text, truncation=True, max_length=max_length, return_tensors='np')
|
||||||
|
|
||||||
# embeddings: [max_length, embedding_dim]
|
# embeddings: [max_length, embedding_dim]
|
||||||
embeddings = torch.zeros((1024, 256), device=device)
|
embeddings = torch.zeros((1024, embedding_dim), device=device)
|
||||||
for idx, token in enumerate(encoded_inputs['input_ids'][0]):
|
for idx, token in enumerate(encoded_inputs['input_ids'][0]):
|
||||||
inputs = {
|
inputs = {
|
||||||
"input_ids": ort.OrtValue.ortvalue_from_numpy(np.array([token])),
|
"input_ids": ort.OrtValue.ortvalue_from_numpy(np.array([token])),
|
||||||
|
112
filter/modelV6_3.py
Normal file
112
filter/modelV6_3.py
Normal file
@ -0,0 +1,112 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
class VideoClassifierV6_3(nn.Module):
|
||||||
|
def __init__(self, embedding_dim=72, hidden_dim=256, output_dim=3, num_heads=4, num_layers=2):
|
||||||
|
super().__init__()
|
||||||
|
self.num_channels = 3
|
||||||
|
self.channel_names = ['title', 'description', 'tags']
|
||||||
|
self.embedding_dim = embedding_dim
|
||||||
|
self.hidden_dim = hidden_dim
|
||||||
|
self.num_layers = num_layers
|
||||||
|
|
||||||
|
# 通道独立处理模块(每个通道独立的Transformer编码器)
|
||||||
|
self.channel_processors = nn.ModuleList()
|
||||||
|
for _ in range(self.num_channels):
|
||||||
|
layers = []
|
||||||
|
# 首先将输入维度转换为hidden_dim
|
||||||
|
layers.extend([
|
||||||
|
nn.Linear(embedding_dim, hidden_dim),
|
||||||
|
nn.GELU(),
|
||||||
|
nn.LayerNorm(hidden_dim)
|
||||||
|
])
|
||||||
|
# 添加num_layers层的Transformer块
|
||||||
|
for _ in range(num_layers):
|
||||||
|
layers.extend([
|
||||||
|
# 自注意力层(使用hidden_dim作为embed_dim)
|
||||||
|
nn.MultiheadAttention(
|
||||||
|
embed_dim=hidden_dim, # 修改为hidden_dim
|
||||||
|
num_heads=num_heads,
|
||||||
|
dropout=0.1
|
||||||
|
),
|
||||||
|
nn.LayerNorm(hidden_dim),
|
||||||
|
# 前馈网络部分
|
||||||
|
nn.Linear(hidden_dim, hidden_dim),
|
||||||
|
nn.GELU(),
|
||||||
|
nn.Linear(hidden_dim, hidden_dim),
|
||||||
|
nn.LayerNorm(hidden_dim)
|
||||||
|
])
|
||||||
|
self.channel_processors.append(nn.Sequential(*layers))
|
||||||
|
|
||||||
|
# 通道权重(可学习,Sigmoid约束)
|
||||||
|
self.channel_weights = nn.Parameter(torch.ones(self.num_channels))
|
||||||
|
|
||||||
|
# 全连接层(扩展维度)
|
||||||
|
self.fc = nn.Sequential(
|
||||||
|
nn.Linear(self.num_channels * hidden_dim, 1024),
|
||||||
|
nn.BatchNorm1d(1024),
|
||||||
|
nn.Dropout(0.2),
|
||||||
|
nn.GELU(),
|
||||||
|
nn.Linear(1024, 512),
|
||||||
|
nn.BatchNorm1d(512),
|
||||||
|
nn.Dropout(0.2),
|
||||||
|
nn.GELU(),
|
||||||
|
nn.Linear(512, output_dim)
|
||||||
|
)
|
||||||
|
|
||||||
|
self._init_weights()
|
||||||
|
|
||||||
|
def _init_weights(self):
|
||||||
|
"""权重初始化(Xavier初始化)"""
|
||||||
|
for m in self.modules():
|
||||||
|
if isinstance(m, nn.Linear):
|
||||||
|
nn.init.xavier_uniform_(m.weight)
|
||||||
|
if m.bias is not None:
|
||||||
|
nn.init.zeros_(m.bias)
|
||||||
|
elif isinstance(m, nn.MultiheadAttention):
|
||||||
|
# 初始化MultiheadAttention的参数(输入投影和输出投影)
|
||||||
|
for name, param in m.named_parameters():
|
||||||
|
if "in_proj" in name or "out_proj" in name:
|
||||||
|
if "weight" in name:
|
||||||
|
nn.init.xavier_uniform_(param)
|
||||||
|
elif "bias" in name:
|
||||||
|
nn.init.zeros_(param)
|
||||||
|
elif isinstance(m, nn.LayerNorm):
|
||||||
|
nn.init.ones_(m.weight)
|
||||||
|
|
||||||
|
def forward(self, channel_features: torch.Tensor):
|
||||||
|
"""
|
||||||
|
输入格式: [batch_size, num_channels, seq_length, embedding_dim]
|
||||||
|
输出格式: [batch_size, output_dim]
|
||||||
|
"""
|
||||||
|
batch_size = channel_features.size(0)
|
||||||
|
processed_channels = []
|
||||||
|
|
||||||
|
for c in range(self.num_channels):
|
||||||
|
c_data = channel_features[:, c].permute(1, 0, 2) # 转为 [S, B, E]
|
||||||
|
|
||||||
|
# 通道独立处理
|
||||||
|
x = c_data
|
||||||
|
for layer in self.channel_processors[c]:
|
||||||
|
if isinstance(layer, nn.MultiheadAttention):
|
||||||
|
# 自注意力层需要显式提供键、值
|
||||||
|
x = layer(x, x, x)[0]
|
||||||
|
else:
|
||||||
|
x = layer(x)
|
||||||
|
|
||||||
|
# 转换回 [B, S, hidden_dim] 并全局平均池化
|
||||||
|
x = x.permute(1, 0, 2)
|
||||||
|
pooled = x.mean(dim=1)
|
||||||
|
processed_channels.append(pooled)
|
||||||
|
|
||||||
|
# 堆叠通道特征
|
||||||
|
processed_channels = torch.stack(processed_channels, dim=1)
|
||||||
|
|
||||||
|
# 应用通道权重(Sigmoid约束)
|
||||||
|
weights = torch.sigmoid(self.channel_weights).view(1, -1, 1)
|
||||||
|
weighted_features = processed_channels * weights
|
||||||
|
|
||||||
|
# 拼接所有通道特征
|
||||||
|
combined = weighted_features.view(batch_size, -1)
|
||||||
|
|
||||||
|
return self.fc(combined)
|
@ -3,7 +3,7 @@ os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
|||||||
import sqlite3
|
import sqlite3
|
||||||
import json
|
import json
|
||||||
import torch
|
import torch
|
||||||
from modelV3_9 import VideoClassifierV3_9
|
from modelV3_10 import VideoClassifierV3_10
|
||||||
from sentence_transformers import SentenceTransformer
|
from sentence_transformers import SentenceTransformer
|
||||||
from tqdm import tqdm # 导入 tqdm
|
from tqdm import tqdm # 导入 tqdm
|
||||||
|
|
||||||
@ -43,8 +43,8 @@ def parse_entry_data(data):
|
|||||||
|
|
||||||
def initialize_model():
|
def initialize_model():
|
||||||
"""初始化模型和文本编码器"""
|
"""初始化模型和文本编码器"""
|
||||||
model = VideoClassifierV3_9()
|
model = VideoClassifierV3_10()
|
||||||
model.load_state_dict(torch.load('./filter/checkpoints/best_model_V3.9.pt', map_location=torch.device('cpu')))
|
model.load_state_dict(torch.load('./filter/checkpoints/best_model_V3.11.pt', map_location=torch.device('cpu')))
|
||||||
model.eval()
|
model.eval()
|
||||||
|
|
||||||
st_model = SentenceTransformer("Thaweewat/jina-embedding-v3-m2v-1024")
|
st_model = SentenceTransformer("Thaweewat/jina-embedding-v3-m2v-1024")
|
||||||
|
@ -5,7 +5,6 @@ from torch.utils.data import DataLoader
|
|||||||
import torch.optim as optim
|
import torch.optim as optim
|
||||||
from dataset import MultiChannelDataset
|
from dataset import MultiChannelDataset
|
||||||
from filter.modelV6_1 import VideoClassifierV6_1
|
from filter.modelV6_1 import VideoClassifierV6_1
|
||||||
from filter.modelV3_15 import AdaptiveRecallLoss
|
|
||||||
from sklearn.metrics import f1_score, recall_score, precision_score, accuracy_score, classification_report
|
from sklearn.metrics import f1_score, recall_score, precision_score, accuracy_score, classification_report
|
||||||
import os
|
import os
|
||||||
import torch
|
import torch
|
||||||
@ -38,9 +37,13 @@ if not os.path.exists(test_file):
|
|||||||
test_dataset = MultiChannelDataset(test_file, mode='test')
|
test_dataset = MultiChannelDataset(test_file, mode='test')
|
||||||
|
|
||||||
# 创建DataLoader
|
# 创建DataLoader
|
||||||
train_loader = DataLoader(train_dataset, batch_size=24, shuffle=True)
|
batch_size = 24
|
||||||
eval_loader = DataLoader(eval_dataset, batch_size=24, shuffle=False)
|
accu_steps = 3
|
||||||
test_loader = DataLoader(test_dataset, batch_size=24, shuffle=False)
|
real_bs = batch_size // accu_steps
|
||||||
|
|
||||||
|
train_loader = DataLoader(train_dataset, batch_size=real_bs, shuffle=True)
|
||||||
|
eval_loader = DataLoader(eval_dataset, batch_size=real_bs, shuffle=False)
|
||||||
|
test_loader = DataLoader(test_dataset, batch_size=real_bs, shuffle=False)
|
||||||
|
|
||||||
train_labels = []
|
train_labels = []
|
||||||
for batch in train_loader:
|
for batch in train_loader:
|
||||||
@ -59,11 +62,11 @@ class_weights = torch.tensor(
|
|||||||
)
|
)
|
||||||
|
|
||||||
model = VideoClassifierV6_1().to(device)
|
model = VideoClassifierV6_1().to(device)
|
||||||
checkpoint_name = './filter/checkpoints/best_model_V6.2-mps-adloss.pt'
|
checkpoint_name = './filter/checkpoints/best_model_V6.3.pt'
|
||||||
|
|
||||||
# 初始化tokenizer和embedding模型
|
# 初始化tokenizer和embedding模型
|
||||||
tokenizer = AutoTokenizer.from_pretrained("alikia2x/jina-embedding-v3-m2v-1024")
|
tokenizer = AutoTokenizer.from_pretrained("alikia2x/jina-embedding-v3-m2v-1024")
|
||||||
session = ort.InferenceSession("./model/embedding_256/onnx/model.onnx")
|
session = ort.InferenceSession("./model/embedding_72/onnx/model.onnx")
|
||||||
|
|
||||||
# 模型保存路径
|
# 模型保存路径
|
||||||
os.makedirs('./filter/checkpoints', exist_ok=True)
|
os.makedirs('./filter/checkpoints', exist_ok=True)
|
||||||
@ -73,9 +76,9 @@ eval_interval = 20
|
|||||||
num_epochs = 20
|
num_epochs = 20
|
||||||
total_steps = samples_count * num_epochs / train_loader.batch_size
|
total_steps = samples_count * num_epochs / train_loader.batch_size
|
||||||
warmup_rate = 0.1
|
warmup_rate = 0.1
|
||||||
optimizer = optim.AdamW(model.parameters(), lr=6e-5, weight_decay=1e-5)
|
optimizer = optim.AdamW(model.parameters(), lr=5e-5, weight_decay=1e-5)
|
||||||
cosine_annealing_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=total_steps - int(total_steps * warmup_rate))
|
cosine_annealing_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=total_steps - int(total_steps * warmup_rate))
|
||||||
warmup_scheduler = optim.lr_scheduler.LinearLR(optimizer, start_factor=0.14, end_factor=1.0, total_iters=int(total_steps * warmup_rate))
|
warmup_scheduler = optim.lr_scheduler.LinearLR(optimizer, start_factor=0.4, end_factor=1.0, total_iters=int(total_steps * warmup_rate))
|
||||||
scheduler = optim.lr_scheduler.SequentialLR(optimizer, schedulers=[warmup_scheduler, cosine_annealing_scheduler], milestones=[int(total_steps * warmup_rate)])
|
scheduler = optim.lr_scheduler.SequentialLR(optimizer, schedulers=[warmup_scheduler, cosine_annealing_scheduler], milestones=[int(total_steps * warmup_rate)])
|
||||||
criterion = nn.CrossEntropyLoss(weight=class_weights).to(device)
|
criterion = nn.CrossEntropyLoss(weight=class_weights).to(device)
|
||||||
|
|
||||||
@ -89,7 +92,7 @@ def evaluate(model, dataloader):
|
|||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
for batch in dataloader:
|
for batch in dataloader:
|
||||||
batch_tensor = prepare_batch_per_token(session, tokenizer, batch['texts']).to(device)
|
batch_tensor = prepare_batch_per_token(session, tokenizer, batch['texts'], embedding_dim=72).to(device)
|
||||||
logits = model(batch_tensor)
|
logits = model(batch_tensor)
|
||||||
preds = torch.argmax(logits, dim=1)
|
preds = torch.argmax(logits, dim=1)
|
||||||
all_preds.extend(preds.cpu().numpy())
|
all_preds.extend(preds.cpu().numpy())
|
||||||
@ -121,7 +124,7 @@ for epoch in range(num_epochs):
|
|||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
|
|
||||||
|
|
||||||
batch_tensor = prepare_batch_per_token(session, tokenizer, batch['texts']).to(device)
|
batch_tensor = prepare_batch_per_token(session, tokenizer, batch['texts'], embedding_dim=72).to(device)
|
||||||
|
|
||||||
logits = model(batch_tensor)
|
logits = model(batch_tensor)
|
||||||
|
|
||||||
@ -130,6 +133,10 @@ for epoch in range(num_epochs):
|
|||||||
optimizer.step()
|
optimizer.step()
|
||||||
epoch_loss += loss.item()
|
epoch_loss += loss.item()
|
||||||
|
|
||||||
|
# 梯度累积
|
||||||
|
if (batch_idx + 1) % accu_steps != 0:
|
||||||
|
continue
|
||||||
|
|
||||||
# 记录训练损失
|
# 记录训练损失
|
||||||
writer.add_scalar('Train/Loss', loss.item(), step)
|
writer.add_scalar('Train/Loss', loss.item(), step)
|
||||||
step += 1
|
step += 1
|
||||||
@ -157,6 +164,11 @@ for epoch in range(num_epochs):
|
|||||||
scheduler.step()
|
scheduler.step()
|
||||||
writer.add_scalar('Train/LR', scheduler.get_last_lr()[0], step)
|
writer.add_scalar('Train/LR', scheduler.get_last_lr()[0], step)
|
||||||
|
|
||||||
|
# 处理最后一个未满累积步数的batch
|
||||||
|
if (batch_idx + 1) % accu_steps != 0:
|
||||||
|
optimizer.step()
|
||||||
|
optimizer.zero_grad()
|
||||||
|
|
||||||
# 记录每个 epoch 的平均训练损失
|
# 记录每个 epoch 的平均训练损失
|
||||||
avg_epoch_loss = epoch_loss / len(train_loader)
|
avg_epoch_loss = epoch_loss / len(train_loader)
|
||||||
writer.add_scalar('Train/Epoch_Loss', avg_epoch_loss, epoch)
|
writer.add_scalar('Train/Epoch_Loss', avg_epoch_loss, epoch)
|
||||||
|
Loading…
Reference in New Issue
Block a user