improve: config for filter model
This commit is contained in:
parent
638135dde6
commit
1ef18ed20d
@ -61,7 +61,7 @@ class_weights = torch.tensor(
|
||||
device=device
|
||||
)
|
||||
|
||||
model = VideoClassifierV6_1().to(device)
|
||||
model = VideoClassifierV6_1(num_heads=8).to(device)
|
||||
checkpoint_name = './filter/checkpoints/best_model_V6.1.pt'
|
||||
|
||||
# 初始化tokenizer和embedding模型
|
||||
@ -75,10 +75,10 @@ os.makedirs('./filter/checkpoints', exist_ok=True)
|
||||
eval_interval = 20
|
||||
num_epochs = 20
|
||||
total_steps = samples_count * num_epochs / batch_size
|
||||
warmup_rate = 0.1
|
||||
optimizer = optim.AdamW(model.parameters(), lr=3e-5, weight_decay=1e-3)
|
||||
warmup_rate = 0.15
|
||||
optimizer = optim.AdamW(model.parameters(), lr=3e-5, weight_decay=1e-4)
|
||||
cosine_annealing_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=total_steps - int(total_steps * warmup_rate))
|
||||
warmup_scheduler = optim.lr_scheduler.LinearLR(optimizer, start_factor=0.8, end_factor=1.0, total_iters=int(total_steps * warmup_rate))
|
||||
warmup_scheduler = optim.lr_scheduler.LinearLR(optimizer, start_factor=0.4, end_factor=1.0, total_iters=int(total_steps * warmup_rate))
|
||||
scheduler = optim.lr_scheduler.SequentialLR(optimizer, schedulers=[warmup_scheduler, cosine_annealing_scheduler], milestones=[int(total_steps * warmup_rate)])
|
||||
criterion = nn.CrossEntropyLoss(weight=class_weights).to(device)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user