update: v3.5
This commit is contained in:
parent
5a83120ad6
commit
546a9f7bc8
@ -14,3 +14,5 @@ Note
|
||||
0138: V4.3-test3
|
||||
0155: V5-test3 # V4 的效果也不是特别好
|
||||
0229: V3.3-test3 # 重新回到V3迭代
|
||||
0316: V3.4-test3 # 模型架构修改,自定义Loss与FC层修改
|
||||
0324: V3.5-test3 # 用回3.2的FC层试试
|
111
filter/modelV3_4.py
Normal file
111
filter/modelV3_4.py
Normal file
@ -0,0 +1,111 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
class VideoClassifierV3_4(nn.Module):
|
||||
def __init__(self, embedding_dim=1024, hidden_dim=512, output_dim=3):
|
||||
super().__init__()
|
||||
self.num_channels = 4
|
||||
self.channel_names = ['title', 'description', 'tags', 'author_info']
|
||||
|
||||
# 可学习温度系数
|
||||
self.temperature = nn.Parameter(torch.tensor(1.7))
|
||||
|
||||
# 带约束的通道权重(使用Sigmoid替代Softmax)
|
||||
self.channel_weights = nn.Parameter(torch.ones(self.num_channels))
|
||||
|
||||
# 增强的非线性层
|
||||
self.fc = nn.Sequential(
|
||||
nn.Linear(embedding_dim * self.num_channels, hidden_dim*2),
|
||||
nn.BatchNorm1d(hidden_dim*2),
|
||||
nn.Dropout(0.3),
|
||||
nn.GELU(),
|
||||
nn.Linear(hidden_dim*2, hidden_dim),
|
||||
nn.BatchNorm1d(hidden_dim),
|
||||
nn.Dropout(0.2),
|
||||
nn.GELU(),
|
||||
nn.Linear(hidden_dim, output_dim)
|
||||
)
|
||||
|
||||
# 权重初始化
|
||||
self._init_weights()
|
||||
|
||||
def _init_weights(self):
|
||||
for layer in self.fc:
|
||||
if isinstance(layer, nn.Linear):
|
||||
# 使用ReLU的初始化参数(GELU的近似)
|
||||
nn.init.kaiming_normal_(layer.weight, nonlinearity='relu') # 修改这里
|
||||
|
||||
# 或者使用Xavier初始化(更适合通用场景)
|
||||
# nn.init.xavier_normal_(layer.weight, gain=nn.init.calculate_gain('relu'))
|
||||
|
||||
nn.init.zeros_(layer.bias)
|
||||
|
||||
|
||||
def forward(self, input_texts, sentence_transformer):
|
||||
# 合并文本进行批量编码
|
||||
all_texts = [text for channel in self.channel_names for text in input_texts[channel]]
|
||||
|
||||
# 冻结的文本编码
|
||||
with torch.no_grad():
|
||||
embeddings = torch.tensor(
|
||||
sentence_transformer.encode(all_texts),
|
||||
device=next(self.parameters()).device
|
||||
)
|
||||
|
||||
# 分割并加权通道特征
|
||||
split_sizes = [len(input_texts[name]) for name in self.channel_names]
|
||||
channel_features = torch.split(embeddings, split_sizes, dim=0)
|
||||
channel_features = torch.stack(channel_features, dim=1)
|
||||
|
||||
# 自适应通道权重(Sigmoid约束)
|
||||
weights = torch.sigmoid(self.channel_weights) # [0,1]范围
|
||||
weighted_features = channel_features * weights.unsqueeze(0).unsqueeze(-1)
|
||||
|
||||
# 特征拼接
|
||||
combined = weighted_features.view(weighted_features.size(0), -1)
|
||||
|
||||
return self.fc(combined)
|
||||
|
||||
def get_channel_weights(self):
|
||||
"""获取各通道权重(带温度调节)"""
|
||||
return torch.softmax(self.channel_weights / self.temperature, dim=0).detach().cpu().numpy()
|
||||
|
||||
|
||||
class AdaptiveRecallLoss(nn.Module):
|
||||
def __init__(self, class_weights, alpha=0.8, gamma=2.0, fp_penalty=0.5):
|
||||
"""
|
||||
Args:
|
||||
class_weights (torch.Tensor): 类别权重
|
||||
alpha (float): 召回率调节因子(0-1)
|
||||
gamma (float): Focal Loss参数
|
||||
fp_penalty (float): 类别0假阳性惩罚强度
|
||||
"""
|
||||
super().__init__()
|
||||
self.class_weights = class_weights
|
||||
self.alpha = alpha
|
||||
self.gamma = gamma
|
||||
self.fp_penalty = fp_penalty
|
||||
|
||||
def forward(self, logits, targets):
|
||||
# 基础交叉熵损失
|
||||
ce_loss = F.cross_entropy(logits, targets, weight=self.class_weights, reduction='none')
|
||||
|
||||
# Focal Loss组件
|
||||
pt = torch.exp(-ce_loss)
|
||||
focal_loss = ((1 - pt) ** self.gamma) * ce_loss
|
||||
|
||||
# 召回率增强(对困难样本加权)
|
||||
class_mask = F.one_hot(targets, num_classes=len(self.class_weights))
|
||||
class_weights = (self.alpha + (1 - self.alpha) * pt.unsqueeze(-1)) * class_mask
|
||||
recall_loss = (class_weights * focal_loss.unsqueeze(-1)).sum(dim=1)
|
||||
|
||||
# 类别0假阳性惩罚
|
||||
probs = F.softmax(logits, dim=1)
|
||||
fp_mask = (targets != 0) & (torch.argmax(logits, dim=1) == 0)
|
||||
fp_loss = self.fp_penalty * probs[:, 0][fp_mask].pow(2).sum()
|
||||
|
||||
# 总损失
|
||||
total_loss = recall_loss.mean() + fp_loss / len(targets)
|
||||
|
||||
return total_loss
|
109
filter/modelV3_5.py
Normal file
109
filter/modelV3_5.py
Normal file
@ -0,0 +1,109 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
class VideoClassifierV3_5(nn.Module):
|
||||
def __init__(self, embedding_dim=1024, hidden_dim=512, output_dim=3):
|
||||
super().__init__()
|
||||
self.num_channels = 4
|
||||
self.channel_names = ['title', 'description', 'tags', 'author_info']
|
||||
|
||||
# 可学习温度系数
|
||||
self.temperature = nn.Parameter(torch.tensor(1.7))
|
||||
|
||||
# 带约束的通道权重(使用Sigmoid替代Softmax)
|
||||
self.channel_weights = nn.Parameter(torch.ones(self.num_channels))
|
||||
|
||||
# 增强的非线性层
|
||||
self.fc = nn.Sequential(
|
||||
nn.Linear(embedding_dim * self.num_channels, hidden_dim*2),
|
||||
nn.BatchNorm1d(hidden_dim*2),
|
||||
nn.Dropout(0.1),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim*2, hidden_dim),
|
||||
nn.LayerNorm(hidden_dim),
|
||||
nn.Linear(hidden_dim, output_dim)
|
||||
)
|
||||
|
||||
# 权重初始化
|
||||
self._init_weights()
|
||||
|
||||
def _init_weights(self):
|
||||
for layer in self.fc:
|
||||
if isinstance(layer, nn.Linear):
|
||||
# 使用ReLU的初始化参数(GELU的近似)
|
||||
nn.init.kaiming_normal_(layer.weight, nonlinearity='relu') # 修改这里
|
||||
|
||||
# 或者使用Xavier初始化(更适合通用场景)
|
||||
# nn.init.xavier_normal_(layer.weight, gain=nn.init.calculate_gain('relu'))
|
||||
|
||||
nn.init.zeros_(layer.bias)
|
||||
|
||||
|
||||
def forward(self, input_texts, sentence_transformer):
|
||||
# 合并文本进行批量编码
|
||||
all_texts = [text for channel in self.channel_names for text in input_texts[channel]]
|
||||
|
||||
# 冻结的文本编码
|
||||
with torch.no_grad():
|
||||
embeddings = torch.tensor(
|
||||
sentence_transformer.encode(all_texts),
|
||||
device=next(self.parameters()).device
|
||||
)
|
||||
|
||||
# 分割并加权通道特征
|
||||
split_sizes = [len(input_texts[name]) for name in self.channel_names]
|
||||
channel_features = torch.split(embeddings, split_sizes, dim=0)
|
||||
channel_features = torch.stack(channel_features, dim=1)
|
||||
|
||||
# 自适应通道权重(Sigmoid约束)
|
||||
weights = torch.sigmoid(self.channel_weights) # [0,1]范围
|
||||
weighted_features = channel_features * weights.unsqueeze(0).unsqueeze(-1)
|
||||
|
||||
# 特征拼接
|
||||
combined = weighted_features.view(weighted_features.size(0), -1)
|
||||
|
||||
return self.fc(combined)
|
||||
|
||||
def get_channel_weights(self):
|
||||
"""获取各通道权重(带温度调节)"""
|
||||
return torch.softmax(self.channel_weights / self.temperature, dim=0).detach().cpu().numpy()
|
||||
|
||||
|
||||
class AdaptiveRecallLoss(nn.Module):
|
||||
def __init__(self, class_weights, alpha=0.8, gamma=2.0, fp_penalty=0.5):
|
||||
"""
|
||||
Args:
|
||||
class_weights (torch.Tensor): 类别权重
|
||||
alpha (float): 召回率调节因子(0-1)
|
||||
gamma (float): Focal Loss参数
|
||||
fp_penalty (float): 类别0假阳性惩罚强度
|
||||
"""
|
||||
super().__init__()
|
||||
self.class_weights = class_weights
|
||||
self.alpha = alpha
|
||||
self.gamma = gamma
|
||||
self.fp_penalty = fp_penalty
|
||||
|
||||
def forward(self, logits, targets):
|
||||
# 基础交叉熵损失
|
||||
ce_loss = F.cross_entropy(logits, targets, weight=self.class_weights, reduction='none')
|
||||
|
||||
# Focal Loss组件
|
||||
pt = torch.exp(-ce_loss)
|
||||
focal_loss = ((1 - pt) ** self.gamma) * ce_loss
|
||||
|
||||
# 召回率增强(对困难样本加权)
|
||||
class_mask = F.one_hot(targets, num_classes=len(self.class_weights))
|
||||
class_weights = (self.alpha + (1 - self.alpha) * pt.unsqueeze(-1)) * class_mask
|
||||
recall_loss = (class_weights * focal_loss.unsqueeze(-1)).sum(dim=1)
|
||||
|
||||
# 类别0假阳性惩罚
|
||||
probs = F.softmax(logits, dim=1)
|
||||
fp_mask = (targets != 0) & (torch.argmax(logits, dim=1) == 0)
|
||||
fp_loss = self.fp_penalty * probs[:, 0][fp_mask].pow(2).sum()
|
||||
|
||||
# 总损失
|
||||
total_loss = recall_loss.mean() + fp_loss / len(targets)
|
||||
|
||||
return total_loss
|
@ -1,11 +1,11 @@
|
||||
import os
|
||||
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"]="1"
|
||||
import numpy as np
|
||||
from torch.utils.data import DataLoader
|
||||
import torch.optim as optim
|
||||
from dataset import MultiChannelDataset
|
||||
from modelV3_3 import VideoClassifierV3_3
|
||||
from modelV3_5 import VideoClassifierV3_5, AdaptiveRecallLoss
|
||||
from sentence_transformers import SentenceTransformer
|
||||
import torch.nn as nn
|
||||
from sklearn.metrics import f1_score, recall_score, precision_score, accuracy_score, classification_report
|
||||
import os
|
||||
import torch
|
||||
@ -37,17 +37,35 @@ train_loader = DataLoader(train_dataset, batch_size=24, shuffle=True)
|
||||
eval_loader = DataLoader(eval_dataset, batch_size=24, shuffle=False)
|
||||
test_loader = DataLoader(test_dataset, batch_size=24, shuffle=False)
|
||||
|
||||
train_labels = []
|
||||
for batch in train_loader:
|
||||
train_labels.extend(batch['label'].tolist())
|
||||
|
||||
# 计算自适应类别权重
|
||||
class_counts = np.bincount(train_labels)
|
||||
median_freq = np.median(class_counts)
|
||||
class_weights = torch.tensor(
|
||||
[median_freq / count for count in class_counts],
|
||||
dtype=torch.float32,
|
||||
device='cpu'
|
||||
)
|
||||
|
||||
# 初始化模型和SentenceTransformer
|
||||
sentence_transformer = SentenceTransformer("Thaweewat/jina-embedding-v3-m2v-1024")
|
||||
model = VideoClassifierV3_3()
|
||||
checkpoint_name = './filter/checkpoints/best_model_V3.3.pt'
|
||||
model = VideoClassifierV3_5()
|
||||
checkpoint_name = './filter/checkpoints/best_model_V3.5.pt'
|
||||
|
||||
# 模型保存路径
|
||||
os.makedirs('./filter/checkpoints', exist_ok=True)
|
||||
|
||||
# 优化器
|
||||
optimizer = optim.AdamW(model.parameters(), lr=2e-3)
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
criterion = AdaptiveRecallLoss(
|
||||
class_weights=class_weights,
|
||||
alpha=0.7, # 召回率权重
|
||||
gamma=1.5, # 困难样本聚焦
|
||||
fp_penalty=0.8 # 假阳性惩罚强度
|
||||
)
|
||||
|
||||
def count_trainable_parameters(model):
|
||||
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|
||||
@ -81,7 +99,7 @@ print(f"Trainable parameters: {count_trainable_parameters(model)}")
|
||||
# 训练循环
|
||||
best_f1 = 0
|
||||
step = 0
|
||||
eval_interval = 50
|
||||
eval_interval = 20
|
||||
num_epochs = 8
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
|
Loading…
Reference in New Issue
Block a user