update: filter model V3.3

This commit is contained in:
alikia2x (寒寒) 2025-01-25 02:57:55 +08:00
parent 6c5dfaae8b
commit 5a83120ad6
Signed by: alikia2x
GPG Key ID: 56209E0CCD8420C6
4 changed files with 13 additions and 72 deletions

View File

@ -12,4 +12,5 @@ Note
0125: V4.1-test3 0125: V4.1-test3
0133: V4.2-test3 0133: V4.2-test3
0138: V4.3-test3 0138: V4.3-test3
0155: V5-test3 # V4 的效果也不是特别好 0155: V5-test3 # V4 的效果也不是特别好
0229: V3.3-test3 # 重新回到V3迭代

View File

@ -1,47 +0,0 @@
import torch
import torch.nn as nn
class VideoClassifierV1_5(nn.Module):
def __init__(self, embedding_dim=1024, hidden_dim=256, output_dim=3):
super().__init__()
self.num_channels = 4
self.channel_names = ['title', 'description', 'tags', 'author_info']
# 通道权重参数(可学习)
self.channel_weights = nn.Parameter(torch.ones(self.num_channels))
# 全连接层
self.fc1 = nn.Linear(embedding_dim * self.num_channels, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, output_dim)
self.log_softmax = nn.LogSoftmax(dim=1)
def forward(self, input_texts, sentence_transformer):
# 各通道特征提取
channel_features = []
for _, name in enumerate(self.channel_names):
# 获取当前通道的批量文本
batch_texts = input_texts[name]
# 使用SentenceTransformer生成嵌入
embeddings = torch.tensor(
sentence_transformer.encode(batch_texts, task="classification")
)
channel_features.append(embeddings)
# 将通道特征堆叠并加权
channel_features = torch.stack(channel_features, dim=1) # [batch_size, num_channels, embedding_dim]
channel_weights = torch.softmax(self.channel_weights, dim=0)
weighted_features = channel_features * channel_weights.unsqueeze(0).unsqueeze(-1)
# 拼接所有通道特征
combined_features = weighted_features.view(weighted_features.size(0), -1) # [batch_size, num_channels * embedding_dim]
# 全连接层
x = torch.relu(self.fc1(combined_features))
output = self.fc2(x)
output = self.log_softmax(output)
return output
def get_channel_weights(self):
"""获取各通道的权重(用于解释性分析)"""
return torch.softmax(self.channel_weights, dim=0).detach().cpu().numpy()

View File

@ -1,28 +1,26 @@
import torch import torch
import torch.nn as nn import torch.nn as nn
class VideoClassifierV5(nn.Module): class VideoClassifierV3_3(nn.Module):
def __init__(self, embedding_dim=1024, hidden_dim=640, output_dim=3): def __init__(self, embedding_dim=1024, hidden_dim=512, output_dim=3):
super().__init__() super().__init__()
self.num_channels = 4 self.num_channels = 4
self.channel_names = ['title', 'description', 'tags', 'author_info'] self.channel_names = ['title', 'description', 'tags', 'author_info']
# 改进1带温度系数的通道权重(比原始固定权重更灵活) # 带温度系数的通道权重(比原始固定权重更灵活)
self.channel_weights = nn.Parameter(torch.ones(self.num_channels)) self.channel_weights = nn.Parameter(torch.ones(self.num_channels))
self.temperature = 1.4 # 可调节的平滑系数 self.temperature = 1.7 # 可调节的平滑系数
# 改进2更稳健的全连接结构 # 改进后的非线性层
self.fc = nn.Sequential( self.fc = nn.Sequential(
nn.Linear(embedding_dim * self.num_channels, hidden_dim*2), nn.Linear(embedding_dim * self.num_channels, hidden_dim*2),
nn.BatchNorm1d(hidden_dim*2), nn.BatchNorm1d(hidden_dim*2),
nn.Dropout(0.1), nn.Dropout(0.1),
nn.ReLU(), nn.ReLU(),
nn.Linear(hidden_dim*2, hidden_dim), nn.Linear(hidden_dim*2, output_dim)
nn.LayerNorm(hidden_dim),
nn.Linear(hidden_dim, output_dim)
) )
# 改进3输出层初始化 # 输出层初始化
nn.init.xavier_uniform_(self.fc[-1].weight) nn.init.xavier_uniform_(self.fc[-1].weight)
nn.init.zeros_(self.fc[-1].bias) nn.init.zeros_(self.fc[-1].bias)
@ -55,8 +53,4 @@ class VideoClassifierV5(nn.Module):
def get_channel_weights(self): def get_channel_weights(self):
"""获取各通道权重(带温度调节)""" """获取各通道权重(带温度调节)"""
return torch.softmax(self.channel_weights / self.temperature, dim=0).detach().cpu().numpy() return torch.softmax(self.channel_weights / self.temperature, dim=0).detach().cpu().numpy()
def set_temperature(self, temperature):
"""设置温度值"""
self.temperature = temperature

View File

@ -3,7 +3,7 @@ os.environ["PYTORCH_ENABLE_MPS_FALLBACK"]="1"
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
import torch.optim as optim import torch.optim as optim
from dataset import MultiChannelDataset from dataset import MultiChannelDataset
from modelV5 import VideoClassifierV5 from modelV3_3 import VideoClassifierV3_3
from sentence_transformers import SentenceTransformer from sentence_transformers import SentenceTransformer
import torch.nn as nn import torch.nn as nn
from sklearn.metrics import f1_score, recall_score, precision_score, accuracy_score, classification_report from sklearn.metrics import f1_score, recall_score, precision_score, accuracy_score, classification_report
@ -39,8 +39,8 @@ test_loader = DataLoader(test_dataset, batch_size=24, shuffle=False)
# 初始化模型和SentenceTransformer # 初始化模型和SentenceTransformer
sentence_transformer = SentenceTransformer("Thaweewat/jina-embedding-v3-m2v-1024") sentence_transformer = SentenceTransformer("Thaweewat/jina-embedding-v3-m2v-1024")
model = VideoClassifierV5() model = VideoClassifierV3_3()
checkpoint_name = './filter/checkpoints/best_model_V5.pt' checkpoint_name = './filter/checkpoints/best_model_V3.3.pt'
# 模型保存路径 # 模型保存路径
os.makedirs('./filter/checkpoints', exist_ok=True) os.makedirs('./filter/checkpoints', exist_ok=True)
@ -84,19 +84,12 @@ step = 0
eval_interval = 50 eval_interval = 50
num_epochs = 8 num_epochs = 8
total_steps = num_epochs * len(train_loader) # 总训练步数
T_max = 1.4 # 初始温度
T_min = 0.15 # 最终温度
for epoch in range(num_epochs): for epoch in range(num_epochs):
model.train() model.train()
epoch_loss = 0 epoch_loss = 0
# 训练阶段 # 训练阶段
for batch_idx, batch in enumerate(train_loader): for batch_idx, batch in enumerate(train_loader):
temperature = T_max - (T_max - T_min) * (step / total_steps)
model.set_temperature(temperature)
optimizer.zero_grad() optimizer.zero_grad()
# 传入文本字典和sentence_transformer # 传入文本字典和sentence_transformer