add: support for inference of filter model V3.13

This commit is contained in:
alikia2x (寒寒) 2025-03-03 01:06:55 +08:00
parent b84f8a1f3e
commit 748e2e2aaa
Signed by: alikia2x
GPG Key ID: 56209E0CCD8420C6
3 changed files with 172 additions and 6 deletions

View File

@ -1,11 +1,11 @@
import torch
from modelV3_10 import VideoClassifierV3_10
from modelV3_12 import VideoClassifierV3_12
def export_onnx(model_path="./filter/checkpoints/best_model_V3.11.pt",
onnx_path="./model/video_classifier_v3_11.onnx"):
def export_onnx(model_path="./filter/checkpoints/best_model_V3.13.pt",
onnx_path="./model/video_classifier_v3_13.onnx"):
# 初始化模型
model = VideoClassifierV3_10()
model = VideoClassifierV3_12()
model.load_state_dict(torch.load(model_path))
model.eval()

166
lib/ml/benchmark.ts Normal file
View File

@ -0,0 +1,166 @@
import { AutoTokenizer, PreTrainedTokenizer } from "@huggingface/transformers";
import * as ort from "onnxruntime";
import { softmax } from "lib/ml/filter_inference.ts";
// 配置参数
const sentenceTransformerModelName = "alikia2x/jina-embedding-v3-m2v-1024";
const onnxClassifierPath = "./model/video_classifier_v3_11.onnx";
const onnxEmbeddingPath = "./model/embedding_original.onnx";
const testDataPath = "./data/filter/test.jsonl";
// 初始化会话
const [sessionClassifier, sessionEmbedding] = await Promise.all([
ort.InferenceSession.create(onnxClassifierPath),
ort.InferenceSession.create(onnxEmbeddingPath),
]);
let tokenizer: PreTrainedTokenizer;
// 初始化分词器
async function loadTokenizer() {
const tokenizerConfig = { local_files_only: true };
tokenizer = await AutoTokenizer.from_pretrained(sentenceTransformerModelName, tokenizerConfig);
}
// 新的嵌入生成函数使用ONNX
async function getONNXEmbeddings(texts: string[], session: ort.InferenceSession): Promise<number[]> {
const { input_ids } = await tokenizer(texts, {
add_special_tokens: false,
return_tensor: false,
});
// 构造输入参数
const cumsum = (arr: number[]): number[] =>
arr.reduce((acc: number[], num: number, i: number) => [...acc, num + (acc[i - 1] || 0)], []);
const offsets: number[] = [0, ...cumsum(input_ids.slice(0, -1).map((x: string) => x.length))];
const flattened_input_ids = input_ids.flat();
// 准备ONNX输入
const inputs = {
input_ids: new ort.Tensor("int64", new BigInt64Array(flattened_input_ids.map(BigInt)), [
flattened_input_ids.length,
]),
offsets: new ort.Tensor("int64", new BigInt64Array(offsets.map(BigInt)), [offsets.length]),
};
// 执行推理
const { embeddings } = await session.run(inputs);
return Array.from(embeddings.data as Float32Array);
}
// 分类推理函数
async function runClassification(embeddings: number[]): Promise<number[]> {
const inputTensor = new ort.Tensor(
Float32Array.from(embeddings),
[1, 4, 1024],
);
const { logits } = await sessionClassifier.run({ channel_features: inputTensor });
return softmax(logits.data as Float32Array);
}
// 指标计算函数
function calculateMetrics(labels: number[], predictions: number[], elapsedTime: number): {
accuracy: number;
precision: number;
recall: number;
f1: number;
"Class 0 Prec": number;
speed: string;
} {
// 初始化混淆矩阵
const classCount = Math.max(...labels, ...predictions) + 1;
const matrix = Array.from({ length: classCount }, () => Array.from({ length: classCount }, () => 0));
// 填充矩阵
labels.forEach((trueLabel, i) => {
matrix[trueLabel][predictions[i]]++;
});
// 计算各指标
let totalTP = 0, totalFP = 0, totalFN = 0;
for (let c = 0; c < classCount; c++) {
const TP = matrix[c][c];
const FP = matrix.flatMap((row, i) => i === c ? [] : [row[c]]).reduce((a, b) => a + b, 0);
const FN = matrix[c].filter((_, i) => i !== c).reduce((a, b) => a + b, 0);
totalTP += TP;
totalFP += FP;
totalFN += FN;
}
const precision = totalTP / (totalTP + totalFP);
const recall = totalTP / (totalTP + totalFN);
const f1 = 2 * (precision * recall) / (precision + recall) || 0;
// 计算Class 0 Precision
const class0TP = matrix[0][0];
const class0FP = matrix.flatMap((row, i) => i === 0 ? [] : [row[0]]).reduce((a, b) => a + b, 0);
const class0Precision = class0TP / (class0TP + class0FP) || 0;
return {
accuracy: labels.filter((l, i) => l === predictions[i]).length / labels.length,
precision,
recall,
f1,
speed: `${(labels.length / (elapsedTime / 1000)).toFixed(1)} samples/sec`,
"Class 0 Prec": class0Precision,
};
}
// 改造后的评估函数
async function evaluateModel(session: ort.InferenceSession): Promise<{
accuracy: number;
precision: number;
recall: number;
f1: number;
"Class 0 Prec": number;
}> {
const data = await Deno.readTextFile(testDataPath);
const samples = data.split("\n")
.map((line) => {
try {
return JSON.parse(line);
} catch {
return null;
}
})
.filter(Boolean);
const allPredictions: number[] = [];
const allLabels: number[] = [];
const t = new Date().getTime();
for (const sample of samples) {
try {
const embeddings = await getONNXEmbeddings([
sample.title,
sample.description,
sample.tags.join(","),
sample.author_info,
], session);
const probabilities = await runClassification(embeddings);
allPredictions.push(probabilities.indexOf(Math.max(...probabilities)));
allLabels.push(sample.label);
} catch (error) {
console.error("Processing error:", error);
}
}
const elapsed = new Date().getTime() - t;
return calculateMetrics(allLabels, allPredictions, elapsed);
}
// 主函数
async function main() {
await loadTokenizer();
const metrics = await evaluateModel(sessionEmbedding);
console.log("Model Metrics:");
console.table(metrics);
}
await main();

View File

@ -6,7 +6,7 @@ import { softmax } from "lib/ml/filter_inference.ts";
const sentenceTransformerModelName = "alikia2x/jina-embedding-v3-m2v-1024";
const onnxClassifierPath = "./model/video_classifier_v3_11.onnx";
const onnxEmbeddingOriginalPath = "./model/embedding_original.onnx";
const onnxEmbeddingQuantizedPath = "./model/model.onnx";
const onnxEmbeddingQuantizedPath = "./model/embedding_original.onnx";
// 初始化会话
const [sessionClassifier, sessionEmbeddingOriginal, sessionEmbeddingQuantized] = await Promise.all([
@ -111,7 +111,7 @@ async function evaluateModel(session: ort.InferenceSession): Promise<{
recall: number;
f1: number;
}> {
const data = await Deno.readTextFile("./data/filter/test.jsonl");
const data = await Deno.readTextFile("./data/filter/test1.jsonl");
const samples = data.split("\n")
.map((line) => {
try {