update: mps support for model training

This commit is contained in:
alikia2x (寒寒) 2025-03-07 02:32:48 +08:00
parent 0ed59f60d0
commit a6319f4303
Signed by: alikia2x
GPG Key ID: 56209E0CCD8420C6
4 changed files with 18 additions and 83 deletions

View File

@ -32,7 +32,7 @@ def prepare_batch(batch_data, device="cpu"):
import onnxruntime as ort import onnxruntime as ort
def prepare_batch_per_token(session, tokenizer, batch_data, max_length=1024): def prepare_batch_per_token(session, tokenizer, batch_data, device = 'cpu', max_length=1024):
""" """
将输入的 batch_data 转换为模型所需的输入格式 [batch_size, num_channels, seq_length, embedding_dim] 将输入的 batch_data 转换为模型所需的输入格式 [batch_size, num_channels, seq_length, embedding_dim]
@ -49,23 +49,23 @@ def prepare_batch_per_token(session, tokenizer, batch_data, max_length=1024):
""" """
batch_size = len(batch_data["title"]) batch_size = len(batch_data["title"])
batch_tensor = torch.zeros(batch_size, 3, max_length, 256) batch_tensor = torch.zeros(batch_size, 3, max_length, 256, device=device)
for i in range(batch_size): for i in range(batch_size):
channel_embeddings = torch.zeros((3, 1024, 256)) channel_embeddings = torch.zeros((3, 1024, 256), device=device)
for j, channel in enumerate(["title", "description", "tags"]): for j, channel in enumerate(["title", "description", "tags"]):
# 获取当前通道的文本 # 获取当前通道的文本
text = batch_data[channel][i] text = batch_data[channel][i]
encoded_inputs = tokenizer(text, truncation=True, max_length=max_length, return_tensors='np') encoded_inputs = tokenizer(text, truncation=True, max_length=max_length, return_tensors='np')
# embeddings: [max_length, embedding_dim] # embeddings: [max_length, embedding_dim]
embeddings = torch.zeros((1024, 256)) embeddings = torch.zeros((1024, 256), device=device)
for idx, token in enumerate(encoded_inputs['input_ids'][0]): for idx, token in enumerate(encoded_inputs['input_ids'][0]):
inputs = { inputs = {
"input_ids": ort.OrtValue.ortvalue_from_numpy(np.array([token])), "input_ids": ort.OrtValue.ortvalue_from_numpy(np.array([token])),
"offsets": ort.OrtValue.ortvalue_from_numpy(np.array([0], dtype=np.int64)) "offsets": ort.OrtValue.ortvalue_from_numpy(np.array([0], dtype=np.int64))
} }
output = session.run(None, inputs)[0] output = session.run(None, inputs)[0]
embeddings[idx] = torch.from_numpy(output) embeddings[idx] = torch.from_numpy(output).to(device)
channel_embeddings[j] = embeddings channel_embeddings[j] = embeddings
batch_tensor[i] = channel_embeddings batch_tensor[i] = channel_embeddings

View File

@ -1,68 +0,0 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
class VideoClassifierV6_0(nn.Module):
def __init__(self, embedding_dim=256, seq_length=1024, hidden_dim=512, output_dim=3):
super().__init__()
self.num_channels = 3
self.channel_names = ['title', 'description', 'tags']
# CNN特征提取层
self.conv_layers = nn.Sequential(
# 第一层卷积
nn.Conv2d(self.num_channels, 64, kernel_size=(3, 3), padding=1),
nn.BatchNorm2d(64),
nn.GELU(),
nn.MaxPool2d(kernel_size=(2, 2)),
# 第二层卷积
nn.Conv2d(64, 128, kernel_size=(3, 3), padding=1),
nn.BatchNorm2d(128),
nn.GELU(),
nn.MaxPool2d(kernel_size=(2, 2)),
# 第三层卷积
nn.Conv2d(128, 256, kernel_size=(3, 3), padding=1),
nn.BatchNorm2d(256),
nn.GELU(),
# 全局平均池化层
# 输出形状为 [batch_size, 256, 1, 1]
nn.AdaptiveAvgPool2d((1, 1))
)
# 全局池化后的特征维度固定为 256
self.feature_dim = 256
# 全连接层
self.fc = nn.Sequential(
nn.Linear(self.feature_dim, hidden_dim),
nn.BatchNorm1d(hidden_dim),
nn.Dropout(0.2),
nn.GELU(),
nn.Linear(hidden_dim, output_dim)
)
self._init_weights()
def _init_weights(self):
for module in self.modules():
if isinstance(module, nn.Conv2d) or isinstance(module, nn.Linear):
nn.init.kaiming_normal_(module.weight, nonlinearity='relu')
if module.bias is not None:
nn.init.zeros_(module.bias)
def forward(self, channel_features: torch.Tensor):
"""
输入格式: [batch_size, num_channels, seq_length, embedding_dim]
输出格式: [batch_size, output_dim]
"""
# CNN特征提取
conv_features = self.conv_layers(channel_features)
# 展平特征(全局池化后形状为 [batch_size, 256, 1, 1]
flat_features = conv_features.view(conv_features.size(0), -1) # [batch_size, 256]
# 全连接层分类
return self.fc(flat_features)

View File

@ -1,9 +1,8 @@
import torch import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F
class VideoClassifierV6_1(nn.Module): class VideoClassifierV6_1(nn.Module):
def __init__(self, embedding_dim=256, seq_length=1024, hidden_dim=256, output_dim=3, num_heads=4): def __init__(self, embedding_dim=256, hidden_dim=256, output_dim=3, num_heads=4):
super().__init__() super().__init__()
self.num_channels = 3 self.num_channels = 3
self.channel_names = ['title', 'description', 'tags'] self.channel_names = ['title', 'description', 'tags']

View File

@ -45,17 +45,20 @@ train_labels = []
for batch in train_loader: for batch in train_loader:
train_labels.extend(batch['label'].tolist()) train_labels.extend(batch['label'].tolist())
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
print(f"Using device: {device}")
# 计算自适应类别权重 # 计算自适应类别权重
class_counts = np.bincount(train_labels) class_counts = np.bincount(train_labels)
median_freq = np.median(class_counts) median_freq = np.median(class_counts)
class_weights = torch.tensor( class_weights = torch.tensor(
[median_freq / count for count in class_counts], [median_freq / count for count in class_counts],
dtype=torch.float32, dtype=torch.float32,
device='cpu' device=device
) )
model = VideoClassifierV6_1() model = VideoClassifierV6_1().to(device)
checkpoint_name = './filter/checkpoints/best_model_V6.2-test2.pt' checkpoint_name = './filter/checkpoints/best_model_V6.2-mps.pt'
# 初始化tokenizer和embedding模型 # 初始化tokenizer和embedding模型
tokenizer = AutoTokenizer.from_pretrained("alikia2x/jina-embedding-v3-m2v-1024") tokenizer = AutoTokenizer.from_pretrained("alikia2x/jina-embedding-v3-m2v-1024")
@ -73,7 +76,7 @@ optimizer = optim.AdamW(model.parameters(), lr=1e-4, weight_decay=1e-5)
cosine_annealing_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=total_steps - int(total_steps * warmup_rate)) cosine_annealing_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=total_steps - int(total_steps * warmup_rate))
warmup_scheduler = optim.lr_scheduler.LinearLR(optimizer, start_factor=0.1, end_factor=1.0, total_iters=int(total_steps * warmup_rate)) warmup_scheduler = optim.lr_scheduler.LinearLR(optimizer, start_factor=0.1, end_factor=1.0, total_iters=int(total_steps * warmup_rate))
scheduler = optim.lr_scheduler.SequentialLR(optimizer, schedulers=[warmup_scheduler, cosine_annealing_scheduler], milestones=[int(total_steps * warmup_rate)]) scheduler = optim.lr_scheduler.SequentialLR(optimizer, schedulers=[warmup_scheduler, cosine_annealing_scheduler], milestones=[int(total_steps * warmup_rate)])
criterion = nn.CrossEntropyLoss(weight=class_weights) criterion = nn.CrossEntropyLoss(weight=class_weights).to(device)
def count_trainable_parameters(model): def count_trainable_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad) return sum(p.numel() for p in model.parameters() if p.requires_grad)
@ -85,11 +88,11 @@ def evaluate(model, dataloader):
with torch.no_grad(): with torch.no_grad():
for batch in dataloader: for batch in dataloader:
batch_tensor = prepare_batch_per_token(session, tokenizer, batch['texts']) batch_tensor = prepare_batch_per_token(session, tokenizer, batch['texts']).to(device)
logits = model(batch_tensor) logits = model(batch_tensor)
preds = torch.argmax(logits, dim=1) preds = torch.argmax(logits, dim=1)
all_preds.extend(preds.cpu().numpy()) all_preds.extend(preds.cpu().numpy())
all_labels.extend(batch['label'].cpu().numpy()) all_labels.extend(batch['label'].to(device).cpu().numpy())
# 计算每个类别的 F1、Recall、Precision 和 Accuracy # 计算每个类别的 F1、Recall、Precision 和 Accuracy
f1 = f1_score(all_labels, all_preds, average='weighted') f1 = f1_score(all_labels, all_preds, average='weighted')
@ -117,11 +120,11 @@ for epoch in range(num_epochs):
optimizer.zero_grad() optimizer.zero_grad()
batch_tensor = prepare_batch_per_token(session, tokenizer, batch['texts']) batch_tensor = prepare_batch_per_token(session, tokenizer, batch['texts']).to(device)
logits = model(batch_tensor) logits = model(batch_tensor)
loss = criterion(logits, batch['label']) loss = criterion(logits, batch['label'].to(device))
loss.backward() loss.backward()
optimizer.step() optimizer.step()
epoch_loss += loss.item() epoch_loss += loss.item()
@ -187,6 +190,7 @@ for epoch in range(num_epochs):
# 测试阶段 # 测试阶段
print("\nTesting...") print("\nTesting...")
model.load_state_dict(torch.load(checkpoint_name)) model.load_state_dict(torch.load(checkpoint_name))
model.to(device)
test_f1, test_recall, test_precision, test_accuracy, test_class_report = evaluate(model, test_loader) test_f1, test_recall, test_precision, test_accuracy, test_class_report = evaluate(model, test_loader)
writer.add_scalar('Test/F1', test_f1, step) writer.add_scalar('Test/F1', test_f1, step)
writer.add_scalar('Test/Recall', test_recall, step) writer.add_scalar('Test/Recall', test_recall, step)