update: the stable filter V6.1 model

This commit is contained in:
alikia2x (寒寒) 2025-03-07 22:28:48 +08:00
parent 2c2e780700
commit ab6a91dd82
Signed by: alikia2x
GPG Key ID: 56209E0CCD8420C6
2 changed files with 5 additions and 117 deletions

View File

@ -1,112 +0,0 @@
import torch
import torch.nn as nn
class VideoClassifierV6_3(nn.Module):
def __init__(self, embedding_dim=256, hidden_dim=256, output_dim=3, num_heads=4, num_layers=2):
super().__init__()
self.num_channels = 3
self.channel_names = ['title', 'description', 'tags']
self.embedding_dim = embedding_dim
self.hidden_dim = hidden_dim
self.num_layers = num_layers
# 通道独立处理模块每个通道独立的Transformer编码器
self.channel_processors = nn.ModuleList()
for _ in range(self.num_channels):
layers = []
# 首先将输入维度转换为hidden_dim
layers.extend([
nn.Linear(embedding_dim, hidden_dim),
nn.GELU(),
nn.LayerNorm(hidden_dim)
])
# 添加num_layers层的Transformer块
for _ in range(num_layers):
layers.extend([
# 自注意力层使用hidden_dim作为embed_dim
nn.MultiheadAttention(
embed_dim=hidden_dim, # 修改为hidden_dim
num_heads=num_heads,
dropout=0.1
),
nn.LayerNorm(hidden_dim),
# 前馈网络部分
nn.Linear(hidden_dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, hidden_dim),
nn.LayerNorm(hidden_dim)
])
self.channel_processors.append(nn.Sequential(*layers))
# 通道权重可学习Sigmoid约束
self.channel_weights = nn.Parameter(torch.ones(self.num_channels))
# 全连接层(扩展维度)
self.fc = nn.Sequential(
nn.Linear(self.num_channels * hidden_dim, 1024),
nn.BatchNorm1d(1024),
nn.Dropout(0.2),
nn.GELU(),
nn.Linear(1024, 512),
nn.BatchNorm1d(512),
nn.Dropout(0.2),
nn.GELU(),
nn.Linear(512, output_dim)
)
self._init_weights()
def _init_weights(self):
"""权重初始化Xavier初始化"""
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.MultiheadAttention):
# 初始化MultiheadAttention的参数输入投影和输出投影
for name, param in m.named_parameters():
if "in_proj" in name or "out_proj" in name:
if "weight" in name:
nn.init.xavier_uniform_(param)
elif "bias" in name:
nn.init.zeros_(param)
elif isinstance(m, nn.LayerNorm):
nn.init.ones_(m.weight)
def forward(self, channel_features: torch.Tensor):
"""
输入格式: [batch_size, num_channels, seq_length, embedding_dim]
输出格式: [batch_size, output_dim]
"""
batch_size = channel_features.size(0)
processed_channels = []
for c in range(self.num_channels):
c_data = channel_features[:, c].permute(1, 0, 2) # 转为 [S, B, E]
# 通道独立处理
x = c_data
for layer in self.channel_processors[c]:
if isinstance(layer, nn.MultiheadAttention):
# 自注意力层需要显式提供键、值
x = layer(x, x, x)[0]
else:
x = layer(x)
# 转换回 [B, S, hidden_dim] 并全局平均池化
x = x.permute(1, 0, 2)
pooled = x.mean(dim=1)
processed_channels.append(pooled)
# 堆叠通道特征
processed_channels = torch.stack(processed_channels, dim=1)
# 应用通道权重Sigmoid约束
weights = torch.sigmoid(self.channel_weights).view(1, -1, 1)
weighted_features = processed_channels * weights
# 拼接所有通道特征
combined = weighted_features.view(batch_size, -1)
return self.fc(combined)

View File

@ -4,7 +4,7 @@ import numpy as np
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
import torch.optim as optim import torch.optim as optim
from dataset import MultiChannelDataset from dataset import MultiChannelDataset
from filter.modelV6_3 import VideoClassifierV6_3 from filter.modelV6_1 import VideoClassifierV6_1
from sklearn.metrics import f1_score, recall_score, precision_score, accuracy_score, classification_report from sklearn.metrics import f1_score, recall_score, precision_score, accuracy_score, classification_report
import os import os
import torch import torch
@ -61,8 +61,8 @@ class_weights = torch.tensor(
device=device device=device
) )
model = VideoClassifierV6_3().to(device) model = VideoClassifierV6_1().to(device)
checkpoint_name = './filter/checkpoints/best_model_V6.3-II.pt' checkpoint_name = './filter/checkpoints/best_model_V6.1.pt'
# 初始化tokenizer和embedding模型 # 初始化tokenizer和embedding模型
tokenizer = AutoTokenizer.from_pretrained("alikia2x/jina-embedding-v3-m2v-1024") tokenizer = AutoTokenizer.from_pretrained("alikia2x/jina-embedding-v3-m2v-1024")
@ -74,9 +74,9 @@ os.makedirs('./filter/checkpoints', exist_ok=True)
# 优化器 # 优化器
eval_interval = 20 eval_interval = 20
num_epochs = 20 num_epochs = 20
total_steps = samples_count * num_epochs / batch_size total_steps = samples_count * num_epochs / train_loader.batch_size
warmup_rate = 0.1 warmup_rate = 0.1
optimizer = optim.AdamW(model.parameters(), lr=1e-5, weight_decay=1e-3) optimizer = optim.AdamW(model.parameters(), lr=5e-5, weight_decay=1e-5)
cosine_annealing_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=total_steps - int(total_steps * warmup_rate)) cosine_annealing_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=total_steps - int(total_steps * warmup_rate))
warmup_scheduler = optim.lr_scheduler.LinearLR(optimizer, start_factor=0.4, end_factor=1.0, total_iters=int(total_steps * warmup_rate)) warmup_scheduler = optim.lr_scheduler.LinearLR(optimizer, start_factor=0.4, end_factor=1.0, total_iters=int(total_steps * warmup_rate))
scheduler = optim.lr_scheduler.SequentialLR(optimizer, schedulers=[warmup_scheduler, cosine_annealing_scheduler], milestones=[int(total_steps * warmup_rate)]) scheduler = optim.lr_scheduler.SequentialLR(optimizer, schedulers=[warmup_scheduler, cosine_annealing_scheduler], milestones=[int(total_steps * warmup_rate)])