update: seperate two classifiers
This commit is contained in:
parent
f488c3ceda
commit
f08a863ac6
@ -24,3 +24,6 @@ Note
|
||||
2243: V3.11 # 256维嵌入
|
||||
2253: V3.11 # 1024维度嵌入(对比)
|
||||
2337: V3.12 # 级联分类
|
||||
2350: V3.13 # V3.12, 换用普通交叉熵损失
|
||||
0012: V3.11 # 换用普通交叉熵损失
|
||||
0039: V3.11 # 级联分类,但使用两个独立模型
|
@ -10,7 +10,7 @@ import tty
|
||||
import termios
|
||||
from sentence_transformers import SentenceTransformer
|
||||
from db_utils import fetch_entry_data, parse_entry_data
|
||||
from modelV3_9 import VideoClassifierV3_9
|
||||
from modelV3_10 import VideoClassifierV3_10
|
||||
|
||||
class LabelingSystem:
|
||||
def __init__(self, mode='model_testing', database_path="./data/main.db",
|
||||
@ -27,7 +27,7 @@ class LabelingSystem:
|
||||
self.model = None
|
||||
self.sentence_transformer = None
|
||||
if self.mode == 'model_testing':
|
||||
self.model = VideoClassifierV3_9()
|
||||
self.model = VideoClassifierV3_10()
|
||||
self.model.load_state_dict(torch.load(model_path))
|
||||
self.model.eval()
|
||||
self.sentence_transformer = SentenceTransformer("Thaweewat/jina-embedding-v3-m2v-1024")
|
||||
|
@ -3,13 +3,13 @@ import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
class VideoClassifierV3_10(nn.Module):
|
||||
def __init__(self, embedding_dim=1024, hidden_dim=648, output_dim=3):
|
||||
def __init__(self, embedding_dim=1024, hidden_dim=648, output_dim=3, temperature=1.7):
|
||||
super().__init__()
|
||||
self.num_channels = 4
|
||||
self.channel_names = ['title', 'description', 'tags', 'author_info']
|
||||
|
||||
# 可学习温度系数
|
||||
self.temperature = nn.Parameter(torch.tensor(1.7))
|
||||
self.temperature = nn.Parameter(torch.tensor(temperature))
|
||||
|
||||
# 带约束的通道权重(使用Sigmoid替代Softmax)
|
||||
self.channel_weights = nn.Parameter(torch.ones(self.num_channels))
|
||||
|
@ -1,7 +1,7 @@
|
||||
from labeling_system import LabelingSystem
|
||||
|
||||
DATABASE_PATH = "./data/main.db"
|
||||
MODEL_PATH = "./filter/checkpoints/best_model_V3.9.pt"
|
||||
MODEL_PATH = "./filter/checkpoints/best_model_V3.11.pt"
|
||||
OUTPUT_FILE = "./data/filter/real_test.jsonl"
|
||||
BATCH_SIZE = 50
|
||||
|
||||
|
@ -4,7 +4,7 @@ import numpy as np
|
||||
from torch.utils.data import DataLoader
|
||||
import torch.optim as optim
|
||||
from dataset import MultiChannelDataset
|
||||
from filter.modelV3_12 import VideoClassifierV3_12
|
||||
from filter.modelV3_10 import VideoClassifierV3_10
|
||||
from sklearn.metrics import f1_score, recall_score, precision_score, accuracy_score, classification_report
|
||||
import os
|
||||
import torch
|
||||
@ -51,30 +51,39 @@ class_weights = torch.tensor(
|
||||
)
|
||||
|
||||
# 初始化模型和SentenceTransformer
|
||||
model = VideoClassifierV3_12()
|
||||
checkpoint_name = './filter/checkpoints/best_model_V3.12.pt'
|
||||
model1 = VideoClassifierV3_10(output_dim=2, hidden_dim=384)
|
||||
model2 = VideoClassifierV3_10(output_dim=2, hidden_dim=384)
|
||||
checkpoint1_name = './filter/checkpoints/best_model_V3.14-part1.pt'
|
||||
checkpoint2_name = './filter/checkpoints/best_model_V3.14-part2.pt'
|
||||
|
||||
# 模型保存路径
|
||||
os.makedirs('./filter/checkpoints', exist_ok=True)
|
||||
|
||||
# 优化器
|
||||
optimizer = optim.AdamW(model.parameters(), lr=4e-4)
|
||||
optimizer1 = optim.AdamW(model1.parameters(), lr=4e-4)
|
||||
optimizer2 = optim.AdamW(model2.parameters(), lr=4e-4)
|
||||
# Cross entropy loss
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
criterion1 = nn.CrossEntropyLoss()
|
||||
criterion2 = nn.CrossEntropyLoss()
|
||||
|
||||
def count_trainable_parameters(model):
|
||||
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|
||||
|
||||
def evaluate(model, dataloader):
|
||||
model.eval()
|
||||
def evaluate(model1, model2, dataloader):
|
||||
model1.eval()
|
||||
model2.eval()
|
||||
all_preds = []
|
||||
all_labels = []
|
||||
|
||||
with torch.no_grad():
|
||||
for batch in dataloader:
|
||||
batch_tensor = prepare_batch(batch['texts'])
|
||||
logits = model(batch_tensor)
|
||||
preds = torch.argmax(logits, dim=1)
|
||||
logits1 = model1(batch_tensor)
|
||||
logits2 = model2(batch_tensor)
|
||||
preds1 = torch.argmax(logits1, dim=1)
|
||||
preds2 = torch.argmax(logits2, dim=1)
|
||||
# 如果preds1输出为0,那么预测结果为0,否则使用preds2的结果加上1
|
||||
preds = torch.where(preds1 == 0, preds1, preds2 + 1)
|
||||
all_preds.extend(preds.cpu().numpy())
|
||||
all_labels.extend(batch['label'].cpu().numpy())
|
||||
|
||||
@ -86,10 +95,10 @@ def evaluate(model, dataloader):
|
||||
|
||||
# 获取每个类别的详细指标
|
||||
class_report = classification_report(all_labels, all_preds, output_dict=True)
|
||||
|
||||
return f1, recall, precision, accuracy, class_report
|
||||
|
||||
print(f"Trainable parameters: {count_trainable_parameters(model)}")
|
||||
return f1, recall, precision, accuracy, class_report
|
||||
|
||||
print(f"Trainable parameters: {count_trainable_parameters(model1) + count_trainable_parameters(model2)}")
|
||||
|
||||
# 训练循环
|
||||
best_f1 = 0
|
||||
@ -98,29 +107,44 @@ eval_interval = 20
|
||||
num_epochs = 8
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
model.train()
|
||||
epoch_loss = 0
|
||||
model1.train()
|
||||
model2.train()
|
||||
epoch_loss_1 = 0
|
||||
epoch_loss_2 = 0
|
||||
|
||||
# 训练阶段
|
||||
for batch_idx, batch in enumerate(train_loader):
|
||||
optimizer.zero_grad()
|
||||
optimizer1.zero_grad()
|
||||
optimizer2.zero_grad()
|
||||
|
||||
batch_tensor = prepare_batch(batch['texts'])
|
||||
batch_tensor_1 = batch_tensor
|
||||
mask = batch['label'] != 0
|
||||
batch_tensor_2 = batch_tensor_1[mask]
|
||||
|
||||
logits = model(batch_tensor)
|
||||
logits1 = model1(batch_tensor_1)
|
||||
logits2 = model2(batch_tensor_2)
|
||||
|
||||
loss = criterion(logits, batch['label'])
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
epoch_loss += loss.item()
|
||||
label1 = torch.where(batch['label'] == 0, 0, 1)
|
||||
label2 = torch.where(batch['label'][mask] == 1, 0, 1)
|
||||
loss1 = criterion1(logits1, label1)
|
||||
loss1.backward()
|
||||
loss2 = criterion2(logits2, label2)
|
||||
loss2.backward()
|
||||
optimizer1.step()
|
||||
optimizer2.step()
|
||||
epoch_loss_1 += loss1.item()
|
||||
epoch_loss_2 += loss2.item()
|
||||
|
||||
# 记录训练损失
|
||||
writer.add_scalar('Train/Loss', loss.item(), step)
|
||||
writer.add_scalar('Train/Loss-1', loss1.item(), step)
|
||||
writer.add_scalar('Train/Loss-2', loss2.item(), step)
|
||||
step += 1
|
||||
|
||||
# 每隔 eval_interval 步执行验证
|
||||
if step % eval_interval == 0:
|
||||
eval_f1, eval_recall, eval_precision, eval_accuracy, eval_class_report = evaluate(model, eval_loader)
|
||||
eval_f1, eval_recall, eval_precision, eval_accuracy, eval_class_report = evaluate(model1, model2, eval_loader)
|
||||
|
||||
writer.add_scalar('Eval/F1', eval_f1, step)
|
||||
writer.add_scalar('Eval/Recall', eval_recall, step)
|
||||
writer.add_scalar('Eval/Precision', eval_precision, step)
|
||||
@ -136,17 +160,19 @@ for epoch in range(num_epochs):
|
||||
# 保存最佳模型
|
||||
if eval_f1 > best_f1:
|
||||
best_f1 = eval_f1
|
||||
torch.save(model.state_dict(), checkpoint_name)
|
||||
torch.save(model1.state_dict(), checkpoint1_name)
|
||||
torch.save(model2.state_dict(), checkpoint2_name)
|
||||
print(" Saved best model")
|
||||
print("Channel weights: ", model.get_channel_weights())
|
||||
print("Channel weights: ", model1.get_channel_weights())
|
||||
print("Channel weights: ", model2.get_channel_weights())
|
||||
|
||||
# 记录每个 epoch 的平均训练损失
|
||||
avg_epoch_loss = epoch_loss / len(train_loader)
|
||||
avg_epoch_loss = (epoch_loss_1 + epoch_loss_2) / 2 / len(train_loader)
|
||||
writer.add_scalar('Train/Epoch_Loss', avg_epoch_loss, epoch)
|
||||
|
||||
# 每个 epoch 结束后执行一次完整验证
|
||||
train_f1, train_recall, train_precision, train_accuracy, train_class_report = evaluate(model, train_loader)
|
||||
eval_f1, eval_recall, eval_precision, eval_accuracy, eval_class_report = evaluate(model, eval_loader)
|
||||
train_f1, train_recall, train_precision, train_accuracy, train_class_report = evaluate(model1, model2, train_loader)
|
||||
eval_f1, eval_recall, eval_precision, eval_accuracy, eval_class_report = evaluate(model1, model2, eval_loader)
|
||||
|
||||
writer.add_scalar('Train/Epoch_F1', train_f1, epoch)
|
||||
writer.add_scalar('Train/Epoch_Recall', train_recall, epoch)
|
||||
@ -173,8 +199,9 @@ for epoch in range(num_epochs):
|
||||
|
||||
# 测试阶段
|
||||
print("\nTesting...")
|
||||
model.load_state_dict(torch.load(checkpoint_name))
|
||||
test_f1, test_recall, test_precision, test_accuracy, test_class_report = evaluate(model, test_loader)
|
||||
model1.load_state_dict(torch.load(checkpoint1_name))
|
||||
model2.load_state_dict(torch.load(checkpoint2_name))
|
||||
test_f1, test_recall, test_precision, test_accuracy, test_class_report = evaluate(model1, model2, test_loader)
|
||||
writer.add_scalar('Test/F1', test_f1, step)
|
||||
writer.add_scalar('Test/Recall', test_recall, step)
|
||||
writer.add_scalar('Test/Precision', test_precision, step)
|
||||
|
Loading…
Reference in New Issue
Block a user