import datetime import numpy as np from model import CompactPredictor import torch def main(): model = CompactPredictor(10).to('cpu', dtype=torch.float32) model.load_state_dict(torch.load('./pred/checkpoints/long_term.pt')) model.eval() # inference initial = 997029 last = initial start_time = '2025-03-17 00:13:17' for i in range(1, 120): hour = i / 0.5 sec = hour * 3600 time_d = np.log2(sec) data = [time_d, np.log2(initial+1), # time_delta, current_views 6.111542, 8.404707, 10.071566, 11.55888, 12.457823,# grows_feat 0.009225, 0.001318, 28.001814# time_feat ] np_arr = np.array([data]) tensor = torch.from_numpy(np_arr).to('cpu', dtype=torch.float32) output = model(tensor) num = output.detach().numpy()[0][0] views_pred = int(np.exp2(num)) + initial current_time = datetime.datetime.strptime(start_time, '%Y-%m-%d %H:%M:%S') + datetime.timedelta(hours=hour) print(current_time.strftime('%m-%d %H:%M:%S'), views_pred, views_pred - last) last = views_pred if __name__ == '__main__': main()