import datetime import numpy as np from model import CompactPredictor import torch def main(): model = CompactPredictor(16).to('cpu', dtype=torch.float32) model.load_state_dict(torch.load('./pred/checkpoints/model_20250315_0504.pt')) model.eval() # inference initial = 999917 last = initial start_time = '2025-03-11 18:43:52' for i in range(1, 48): hour = i / 30 sec = hour * 3600 time_d = np.log2(sec) data = [time_d, np.log2(initial+1), # time_delta, current_views 5.231997, 6.473876, 7.063624, 7.026946, 6.9753, 8.599954, 9.448747, 7.236474, 10.881226, 12.128971, 13.351179, # grows_feat 0.7798611111, 0.2541666667, 24.778674 # time_feat ] np_arr = np.array([data]) tensor = torch.from_numpy(np_arr).to('cpu', dtype=torch.float32) output = model(tensor) num = output.detach().numpy()[0][0] views_pred = int(np.exp2(num)) + initial current_time = datetime.datetime.strptime(start_time, '%Y-%m-%d %H:%M:%S') + datetime.timedelta(hours=hour) print(current_time.strftime('%m-%d %H:%M'), views_pred, views_pred - last) last = views_pred if __name__ == '__main__': main()