32 lines
1.2 KiB
Python
32 lines
1.2 KiB
Python
import datetime
|
|
import numpy as np
|
|
from model import CompactPredictor
|
|
import torch
|
|
|
|
def main():
|
|
model = CompactPredictor(15).to('cpu', dtype=torch.float32)
|
|
model.load_state_dict(torch.load('./pred/checkpoints/model_20250320_0045.pt'))
|
|
model.eval()
|
|
# inference
|
|
initial = 999704
|
|
last = initial
|
|
start_time = '2025-03-19 22:00:42'
|
|
for i in range(1, 48):
|
|
hour = i / 6
|
|
sec = hour * 3600
|
|
time_d = np.log2(sec)
|
|
data = [time_d, np.log2(initial+1), # time_delta, current_views
|
|
4.857981, 6.29067, 6.869476, 6.58392, 6.523051, 8.242355, 8.841574, 10.203909, 11.449314, 12.659556, # grows_feat
|
|
0.916956, 0.416708, 28.003162 # time_feat
|
|
]
|
|
np_arr = np.array([data])
|
|
tensor = torch.from_numpy(np_arr).to('cpu', dtype=torch.float32)
|
|
output = model(tensor)
|
|
num = output.detach().numpy()[0][0]
|
|
views_pred = int(np.exp2(num)) + initial
|
|
current_time = datetime.datetime.strptime(start_time, '%Y-%m-%d %H:%M:%S') + datetime.timedelta(hours=hour)
|
|
print(current_time.strftime('%m-%d %H:%M'), views_pred, views_pred - last)
|
|
last = views_pred
|
|
|
|
if __name__ == '__main__':
|
|
main() |