93 lines
3.4 KiB
Python
93 lines
3.4 KiB
Python
import torch
|
||
import torch.nn as nn
|
||
import torch.nn.functional as F
|
||
|
||
class VideoClassifierV6_0(nn.Module):
|
||
def __init__(self, embedding_dim=256, seq_length=1024, hidden_dim=512, output_dim=3):
|
||
super().__init__()
|
||
self.num_channels = 4
|
||
self.channel_names = ['title', 'description', 'tags', 'author_info']
|
||
|
||
# CNN特征提取层
|
||
self.conv_layers = nn.Sequential(
|
||
# 第一层卷积
|
||
nn.Conv2d(self.num_channels, 64, kernel_size=(3, 3), padding=1),
|
||
nn.BatchNorm2d(64),
|
||
nn.GELU(),
|
||
nn.MaxPool2d(kernel_size=(2, 2)),
|
||
|
||
# 第二层卷积
|
||
nn.Conv2d(64, 128, kernel_size=(3, 3), padding=1),
|
||
nn.BatchNorm2d(128),
|
||
nn.GELU(),
|
||
nn.MaxPool2d(kernel_size=(2, 2)),
|
||
|
||
# 第三层卷积
|
||
nn.Conv2d(128, 256, kernel_size=(3, 3), padding=1),
|
||
nn.BatchNorm2d(256),
|
||
nn.GELU(),
|
||
|
||
# 全局平均池化层
|
||
# 输出形状为 [batch_size, 256, 1, 1]
|
||
nn.AdaptiveAvgPool2d((1, 1))
|
||
)
|
||
|
||
# 全局池化后的特征维度固定为 256
|
||
self.feature_dim = 256
|
||
|
||
# 全连接层
|
||
self.fc = nn.Sequential(
|
||
nn.Linear(self.feature_dim, hidden_dim),
|
||
nn.BatchNorm1d(hidden_dim),
|
||
nn.Dropout(0.2),
|
||
nn.GELU(),
|
||
nn.Linear(hidden_dim, output_dim)
|
||
)
|
||
|
||
self._init_weights()
|
||
|
||
def _init_weights(self):
|
||
for module in self.modules():
|
||
if isinstance(module, nn.Conv2d) or isinstance(module, nn.Linear):
|
||
nn.init.kaiming_normal_(module.weight, nonlinearity='relu')
|
||
if module.bias is not None:
|
||
nn.init.zeros_(module.bias)
|
||
|
||
def forward(self, channel_features: torch.Tensor):
|
||
"""
|
||
输入格式: [batch_size, num_channels, seq_length, embedding_dim]
|
||
输出格式: [batch_size, output_dim]
|
||
"""
|
||
# CNN特征提取
|
||
conv_features = self.conv_layers(channel_features)
|
||
|
||
# 展平特征(全局池化后形状为 [batch_size, 256, 1, 1])
|
||
flat_features = conv_features.view(conv_features.size(0), -1) # [batch_size, 256]
|
||
|
||
# 全连接层分类
|
||
return self.fc(flat_features)
|
||
|
||
# 损失函数保持不变
|
||
class AdaptiveRecallLoss(nn.Module):
|
||
def __init__(self, class_weights, alpha=0.8, gamma=2.0, fp_penalty=0.5):
|
||
super().__init__()
|
||
self.class_weights = class_weights
|
||
self.alpha = alpha
|
||
self.gamma = gamma
|
||
self.fp_penalty = fp_penalty
|
||
|
||
def forward(self, logits, targets):
|
||
ce_loss = F.cross_entropy(logits, targets, weight=self.class_weights, reduction='none')
|
||
pt = torch.exp(-ce_loss)
|
||
focal_loss = ((1 - pt) ** self.gamma) * ce_loss
|
||
|
||
class_mask = F.one_hot(targets, num_classes=len(self.class_weights))
|
||
class_weights = (self.alpha + (1 - self.alpha) * pt.unsqueeze(-1)) * class_mask
|
||
recall_loss = (class_weights * focal_loss.unsqueeze(-1)).sum(dim=1)
|
||
|
||
probs = F.softmax(logits, dim=1)
|
||
fp_mask = (targets != 0) & (torch.argmax(logits, dim=1) == 0)
|
||
fp_loss = self.fp_penalty * probs[:, 0][fp_mask].pow(2).sum()
|
||
|
||
total_loss = recall_loss.mean() + fp_loss / len(targets)
|
||
return total_loss |