update: evaluation

This commit is contained in:
alikia2x (寒寒) 2024-09-19 22:03:54 +08:00
parent 435faa4b92
commit 01597c298d
Signed by: alikia2x
GPG Key ID: 56209E0CCD8420C6
5 changed files with 52 additions and 6 deletions

View File

@ -0,0 +1,26 @@
from openai import OpenAI
client = OpenAI(base_url="http://localhost:11434/v1", api_key="ollama")
text='''互联
虎脸
互怜
糊脸对猴
互联工程
互联互通
湖莲潭
互联网
互联网安全
互联网编程
互联网产品
互联网出版管理暂行规定
互联网创业
互联网大会
互联网等信息网络传播视听节目管理办法
互联网电脑
互联网服务
互联网公司'''
messages = [
{"role": "system", "content": "用户会给出若干中文短语或词汇,每行一个。你需要从中抽取出**不重复**的中文**词汇**并输出,每行一个。**注意,你不应该输出其它任何内容**"},
{"role": "user", "content": text},
]
response = client.chat.completions.create(model='deepseek-v2',messages=messages,temperature=1.0)
print(response.choices[0].message.content)

View File

@ -1,14 +1,15 @@
import subprocess import subprocess
from tqdm import tqdm
def translate_text(text): def translate_text(text):
command = f'argos-translate --from zh --to en "{text}"' command = f'argos-translate --from zh --to en "{text}"'
result = subprocess.run(command, shell=True, capture_output=True, text=True) result = subprocess.run(command, shell=True, capture_output=True, text=True)
return result.stdout.strip() return result.stdout.strip()
with open("src.txt", "r") as f: with open("./data/src.txt", "r") as f:
src_lines = f.readlines() src_lines = f.readlines()
for line in src_lines: for line in tqdm(src_lines):
result = translate_text(line) result = translate_text(line)
with open("hyp-ag.txt", 'a') as f: with open("./data/hyp-sk-1.2.txt", 'a') as f:
f.write(result + '\n') f.write(result + '\n')

View File

@ -1,10 +1,10 @@
from googletrans import Translator from googletrans import Translator
translator = Translator() translator = Translator()
with open("src.txt", "r") as f: with open("./data/src.txt", "r") as f:
src_lines = f.readlines() src_lines = f.readlines()
for line in src_lines: for line in src_lines:
result = translator.translate(line, dest='en') result = translator.translate(line, dest='en')
with open("hyp-gg-py.txt", 'a') as f: with open("./data/hyp-gg-py.txt", 'a') as f:
f.write(result.text + '\n') f.write(result.text + '\n')

View File

@ -0,0 +1,19 @@
from tqdm import tqdm
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
def translate_text(text):
tokenizer.src_lang = "zh"
encoded_zh = tokenizer(text, return_tensors="pt")
generated_tokens = model.generate(**encoded_zh, forced_bos_token_id=tokenizer.get_lang_id("en"))
result = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
return result[0]
with open("./data/src.txt", "r") as f:
src_lines = f.readlines()
for line in tqdm(src_lines):
result = translate_text(line)
with open("./data/hyp-m2m.txt", 'a') as f:
f.write(result + '\n')

View File

@ -28,7 +28,7 @@ def main(input_file, sample_size):
chinese_text = item["chinese"] chinese_text = item["chinese"]
english_text = item["english"] english_text = item["english"]
with open("src.txt", 'a') as srcf, open("ref.txt", 'a') as reff: with open("./data/src.txt", 'a') as srcf, open("./data/ref.txt", 'a') as reff:
srcf.write(chinese_text + '\n') srcf.write(chinese_text + '\n')
reff.write(english_text + '\n') reff.write(english_text + '\n')