sparkastML/intention-classify/convert_onnx.ipynb
2024-09-01 22:17:04 +08:00

127 lines
4.0 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "markdown",
"id": "94ff7007",
"metadata": {},
"source": [
"# Convert to ONNX\n",
"\n",
"This notebook converts our model to [ONNX](https://onnx.ai/) format, which is the open standard for machine learning interoperability. In this way, we can run our model in JS (browser)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "311162fd-f957-4746-b524-25bb3e09efbc",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"from torch import nn\n",
"import torch.utils.model_zoo as model_zoo\n",
"import torch.onnx\n",
"import torch.nn as nn\n",
"import torch.nn.functional as F"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "fd182c6d-1e77-4bbb-bb53-8321d40ae002",
"metadata": {},
"outputs": [],
"source": [
"class TextCNN(nn.Module):\n",
" def __init__(self, input_dim, num_classes):\n",
" super(TextCNN, self).__init__()\n",
" self.conv1 = nn.Conv1d(in_channels=input_dim, out_channels=DIMENSIONS, kernel_size=3, padding=1)\n",
" self.conv2 = nn.Conv1d(in_channels=DIMENSIONS, out_channels=DIMENSIONS, kernel_size=4, padding=1)\n",
" self.conv3 = nn.Conv1d(in_channels=DIMENSIONS, out_channels=DIMENSIONS, kernel_size=5, padding=2)\n",
" \n",
" self.bn1 = nn.BatchNorm1d(DIMENSIONS)\n",
" self.bn2 = nn.BatchNorm1d(DIMENSIONS)\n",
" self.bn3 = nn.BatchNorm1d(DIMENSIONS)\n",
" \n",
" self.dropout = nn.Dropout(0.5)\n",
" self.fc = nn.Linear(DIMENSIONS * 3, num_classes)\n",
"\n",
" def forward(self, x):\n",
" x = x.permute(0, 2, 1) # Change the input shape to (batch_size, embedding_dim, seq_length)\n",
" \n",
" x1 = F.relu(self.bn1(self.conv1(x)))\n",
" x1 = F.adaptive_max_pool1d(x1, output_size=1).squeeze(2)\n",
" \n",
" x2 = F.relu(self.bn2(self.conv2(x)))\n",
" x2 = F.adaptive_max_pool1d(x2, output_size=1).squeeze(2)\n",
" \n",
" x3 = F.relu(self.bn3(self.conv3(x)))\n",
" x3 = F.adaptive_max_pool1d(x3, output_size=1).squeeze(2)\n",
" \n",
" x = torch.cat((x1, x2, x3), dim=1)\n",
" x = self.dropout(x)\n",
" x = self.fc(x)\n",
" return x"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "bdb597cb-d896-485c-8c9c-897b1d35e8d2",
"metadata": {},
"outputs": [],
"source": [
"model = torch.load(\"model.pt\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "9f7a6e64-75f2-4fa9-8d1e-b83099765d02",
"metadata": {},
"outputs": [],
"source": [
"\n",
"# Example input: use random embedding vector to simulate real input\n",
"dummy_input = torch.randn(1, 64, 128) # (batch_size, seq_length, embedding_dim)\n",
"\n",
"# Export model\n",
"torch.onnx.export(\n",
" model, # The model to export\n",
" dummy_input, # Example input\n",
" \"model.onnx\", # File name\n",
" input_names=['input'], # Input name (Could customize)\n",
" output_names=['output'], # Output name (Could customize)\n",
" dynamic_axes={\n",
" 'input': {0: 'batch_size', 1: 'seq_length'}, # Dynamic batch and sequence length\n",
" 'output': {0: 'batch_size'}\n",
" },\n",
" opset_version=11 # ONNX versionensure the ONNX runtime supports it\n",
")\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.19"
}
},
"nbformat": 4,
"nbformat_minor": 5
}