sparkastML/intention-classify/training/model.py

54 lines
2.0 KiB
Python

# model.py
import torch
import torch.nn as nn
import torch.nn.functional as F
from training.config import DIMENSIONS
class SelfAttention(nn.Module):
def __init__(self, input_dim, heads):
super(SelfAttention, self).__init__()
self.heads = heads
self.scale = (input_dim // heads) ** -0.5
self.qkv = nn.Linear(input_dim, input_dim * 3)
self.fc = nn.Linear(input_dim, input_dim)
def forward(self, x):
batch_size, seq_length, embedding_dim = x.shape
qkv = self.qkv(x).view(
batch_size, seq_length, self.heads, 3, embedding_dim // self.heads
)
q, k, v = qkv[..., 0, :], qkv[..., 1, :], qkv[..., 2, :]
q = q.permute(0, 2, 1, 3)
k = k.permute(0, 2, 1, 3)
v = v.permute(0, 2, 1, 3)
attn_weights = torch.matmul(q, k.transpose(-2, -1)) * self.scale
attn_weights = F.softmax(attn_weights, dim=-1)
attention_output = torch.matmul(attn_weights, v)
attention_output = attention_output.permute(0, 2, 1, 3).contiguous()
attention_output = attention_output.view(batch_size, seq_length, embedding_dim)
return self.fc(attention_output)
class AttentionBasedModel(nn.Module):
def __init__(self, input_dim, num_classes, heads=8, dim_feedforward=512, num_layers=3):
super(AttentionBasedModel, self).__init__()
self.self_attention_layers = nn.ModuleList([
SelfAttention(input_dim, heads) for _ in range(num_layers)
])
self.fc1 = nn.Linear(input_dim, dim_feedforward)
self.fc2 = nn.Linear(dim_feedforward, num_classes)
self.dropout = nn.Dropout(0.5)
self.norm = nn.LayerNorm(input_dim)
def forward(self, x):
for attn_layer in self.self_attention_layers:
attn_output = attn_layer(x)
x = self.norm(attn_output + x)
pooled_output = torch.mean(x, dim=1)
x = F.relu(self.fc1(pooled_output))
x = self.dropout(x)
x = self.fc2(x)
return x