add: filter model based on cascade classifier (V3.12)

This commit is contained in:
alikia2x (寒寒) 2025-03-02 23:45:32 +08:00
parent 3aa3bc8596
commit f488c3ceda
Signed by: alikia2x
GPG Key ID: 56209E0CCD8420C6
6 changed files with 154 additions and 140 deletions

View File

@ -23,3 +23,4 @@ Note
2308: V3.11
2243: V3.11 # 256维嵌入
2253: V3.11 # 1024维度嵌入对比
2337: V3.12 # 级联分类

View File

@ -1,3 +1,4 @@
import numpy as np
import torch
from model2vec import StaticModel
@ -30,6 +31,10 @@ def prepare_batch(batch_data, device="cpu"):
batch_tensor = torch.stack(channel_embeddings, dim=1) # 在 dim=1 上堆叠
return batch_tensor
import onnxruntime as ort
from transformers import AutoTokenizer
from itertools import accumulate
def prepare_batch_per_token(batch_data, max_length=1024):
"""
将输入的 batch_data 转换为模型所需的输入格式 [batch_size, num_channels, seq_length, embedding_dim]
@ -46,18 +51,60 @@ def prepare_batch_per_token(batch_data, max_length=1024):
返回:
torch.Tensor: 形状为 [batch_size, num_channels, seq_length, embedding_dim] 的张量
"""
# 初始化 tokenizer 和 ONNX 模型
tokenizer = AutoTokenizer.from_pretrained("alikia2x/jina-embedding-v3-m2v-1024")
session = ort.InferenceSession("./model/embedding_256/onnx/model.onnx")
# 1. 对每个通道的文本分别编码
channel_embeddings = []
model = StaticModel.from_pretrained("./model/embedding_256/")
for channel in ["title", "description", "tags", "author_info"]:
texts = batch_data[channel] # 获取当前通道的文本列表
# 使用tokenizer将文本转换为tokens
encoded_input = model.tokenizer(texts, padding=True, truncation=True, max_length=max_length, return_tensors='pt')
with torch.no_grad():
model_output = model.model(**encoded_input)
# 提取最后一个隐藏层的结果
embeddings = model_output.last_hidden_state.to(torch.float32) # 将embeddings 放在指定device上
channel_embeddings.append(embeddings)
# Step 1: 生成 input_ids 和 offsets
# 对每个文本单独编码,保留原始 token 长度
encoded_inputs = [tokenizer(text, truncation=True, max_length=max_length, return_tensors='np') for text in texts]
# 提取每个文本的 input_ids 长度(考虑实际的 token 数量)
input_ids_lengths = [len(enc["input_ids"][0]) for enc in encoded_inputs]
# 生成 offsets: [0, len1, len1+len2, ...]
offsets = list(accumulate([0] + input_ids_lengths[:-1])) # 累积和,排除最后一个长度
# 将所有 input_ids 展平为一维数组
flattened_input_ids = np.concatenate([enc["input_ids"][0] for enc in encoded_inputs], axis=0).astype(np.int64)
# Step 2: 构建 ONNX 输入
inputs = {
"input_ids": ort.OrtValue.ortvalue_from_numpy(flattened_input_ids),
"offsets": ort.OrtValue.ortvalue_from_numpy(np.array(offsets, dtype=np.int64))
}
# Step 3: 运行 ONNX 模型
embeddings = session.run(None, inputs)[0] # 假设输出名为 "embeddings"
# Step 4: 将输出重塑为 [batch_size, seq_length, embedding_dim]
# 注意:这里假设 ONNX 输出的形状是 [total_tokens, embedding_dim]
# 需要根据实际序列长度重新分组
batch_size = len(texts)
embeddings_split = np.split(embeddings, np.cumsum(input_ids_lengths[:-1]))
padded_embeddings = []
for emb, seq_len in zip(embeddings_split, input_ids_lengths):
# 对每个序列填充到 max_length
if seq_len > max_length:
# 如果序列长度超过 max_length截断
emb = emb[:max_length]
pad_length = 0
else:
# 否则填充到 max_length
pad_length = max_length - seq_len
# 填充到 [max_length, embedding_dim]
padded = np.pad(emb, ((0, pad_length), (0, 0)), mode='constant')
padded_embeddings.append(padded)
# 确保所有填充后的序列形状一致
embeddings_tensor = torch.tensor(np.stack(padded_embeddings), dtype=torch.float32)
channel_embeddings.append(embeddings_tensor)
# 2. 将编码结果堆叠为 [batch_size, num_channels, seq_length, embedding_dim]
batch_tensor = torch.stack(channel_embeddings, dim=1)

79
filter/modelV3_12.py Normal file
View File

@ -0,0 +1,79 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
class VideoClassifierV3_12(nn.Module):
def __init__(self, embedding_dim=1024, hidden_dim=648):
super().__init__()
self.num_channels = 4
self.channel_names = ['title', 'description', 'tags', 'author_info']
# 可学习温度系数
self.temperature = nn.Parameter(torch.tensor(1.7))
# 带约束的通道权重使用Sigmoid替代Softmax
self.channel_weights = nn.Parameter(torch.ones(self.num_channels))
# 第一个二分类器0 vs 1/2
self.first_classifier = nn.Sequential(
nn.Linear(embedding_dim * self.num_channels, hidden_dim*2),
nn.BatchNorm1d(hidden_dim*2),
nn.Dropout(0.2),
nn.GELU(),
nn.Linear(hidden_dim*2, 2) # 输出为2类0 vs 1/2
)
# 第二个二分类器1 vs 2
self.second_classifier = nn.Sequential(
nn.Linear(embedding_dim * self.num_channels, hidden_dim*2),
nn.BatchNorm1d(hidden_dim*2),
nn.Dropout(0.2),
nn.GELU(),
nn.Linear(hidden_dim*2, 2) # 输出为2类1 vs 2
)
# 权重初始化
self._init_weights()
def _init_weights(self):
for layer in self.first_classifier:
if isinstance(layer, nn.Linear):
nn.init.kaiming_normal_(layer.weight, nonlinearity='relu')
nn.init.zeros_(layer.bias)
for layer in self.second_classifier:
if isinstance(layer, nn.Linear):
nn.init.kaiming_normal_(layer.weight, nonlinearity='relu')
nn.init.zeros_(layer.bias)
def forward(self, channel_features: torch.Tensor):
"""
输入格式: [batch_size, num_channels, embedding_dim]
输出格式: [batch_size, output_dim]
"""
# 自适应通道权重Sigmoid约束
weights = torch.sigmoid(self.channel_weights) # [0,1]范围
weighted_features = channel_features * weights.unsqueeze(0).unsqueeze(-1)
# 特征拼接
combined = weighted_features.view(weighted_features.size(0), -1)
# 第一个二分类器0 vs 1/2
first_output = self.first_classifier(combined)
first_probs = F.softmax(first_output, dim=1)
# 第二个二分类器1 vs 2
second_output = self.second_classifier(combined)
second_probs = F.softmax(second_output, dim=1)
# 合并结果
final_probs = torch.zeros(channel_features.size(0), 3).to(channel_features.device)
final_probs[:, 0] = first_probs[:, 0] # 类别0的概率
final_probs[:, 1] = first_probs[:, 1] * second_probs[:, 0] # 类别1的概率
final_probs[:, 2] = first_probs[:, 1] * second_probs[:, 1] # 类别2的概率
return final_probs
def get_channel_weights(self):
"""获取各通道权重(带温度调节)"""
return torch.softmax(self.channel_weights / self.temperature, dim=0).detach().cpu().numpy()

View File

@ -1,107 +0,0 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
class VideoClassifierV3_9(nn.Module):
def __init__(self, embedding_dim=1024, hidden_dim=648, output_dim=3):
super().__init__()
self.num_channels = 4
self.channel_names = ['title', 'description', 'tags', 'author_info']
# 可学习温度系数
self.temperature = nn.Parameter(torch.tensor(1.7))
# 带约束的通道权重使用Sigmoid替代Softmax
self.channel_weights = nn.Parameter(torch.ones(self.num_channels))
# 增强的非线性层
self.fc = nn.Sequential(
nn.Linear(embedding_dim * self.num_channels, hidden_dim*2),
nn.BatchNorm1d(hidden_dim*2),
nn.Dropout(0.2),
nn.GELU(),
nn.Linear(hidden_dim*2, output_dim)
)
# 权重初始化
self._init_weights()
def _init_weights(self):
for layer in self.fc:
if isinstance(layer, nn.Linear):
# 使用ReLU的初始化参数GELU的近似
nn.init.kaiming_normal_(layer.weight, nonlinearity='relu') # 修改这里
# 或者使用Xavier初始化更适合通用场景
# nn.init.xavier_normal_(layer.weight, gain=nn.init.calculate_gain('relu'))
nn.init.zeros_(layer.bias)
def forward(self, input_texts, sentence_transformer):
# 合并文本进行批量编码
all_texts = [text for channel in self.channel_names for text in input_texts[channel]]
# 冻结的文本编码
with torch.no_grad():
embeddings = torch.tensor(
sentence_transformer.encode(all_texts),
device=next(self.parameters()).device
)
# 分割并加权通道特征
split_sizes = [len(input_texts[name]) for name in self.channel_names]
channel_features = torch.split(embeddings, split_sizes, dim=0)
channel_features = torch.stack(channel_features, dim=1)
# 自适应通道权重Sigmoid约束
weights = torch.sigmoid(self.channel_weights) # [0,1]范围
weighted_features = channel_features * weights.unsqueeze(0).unsqueeze(-1)
# 特征拼接
combined = weighted_features.view(weighted_features.size(0), -1)
return self.fc(combined)
def get_channel_weights(self):
"""获取各通道权重(带温度调节)"""
return torch.softmax(self.channel_weights / self.temperature, dim=0).detach().cpu().numpy()
class AdaptiveRecallLoss(nn.Module):
def __init__(self, class_weights, alpha=0.8, gamma=2.0, fp_penalty=0.5):
"""
Args:
class_weights (torch.Tensor): 类别权重
alpha (float): 召回率调节因子0-1
gamma (float): Focal Loss参数
fp_penalty (float): 类别0假阳性惩罚强度
"""
super().__init__()
self.class_weights = class_weights
self.alpha = alpha
self.gamma = gamma
self.fp_penalty = fp_penalty
def forward(self, logits, targets):
# 基础交叉熵损失
ce_loss = F.cross_entropy(logits, targets, weight=self.class_weights, reduction='none')
# Focal Loss组件
pt = torch.exp(-ce_loss)
focal_loss = ((1 - pt) ** self.gamma) * ce_loss
# 召回率增强(对困难样本加权)
class_mask = F.one_hot(targets, num_classes=len(self.class_weights))
class_weights = (self.alpha + (1 - self.alpha) * pt.unsqueeze(-1)) * class_mask
recall_loss = (class_weights * focal_loss.unsqueeze(-1)).sum(dim=1)
# 类别0假阳性惩罚
probs = F.softmax(logits, dim=1)
fp_mask = (targets != 0) & (torch.argmax(logits, dim=1) == 0)
fp_loss = self.fp_penalty * probs[:, 0][fp_mask].pow(2).sum()
# 总损失
total_loss = recall_loss.mean() + fp_loss / len(targets)
return total_loss

View File

@ -26,10 +26,14 @@ class VideoClassifierV6_0(nn.Module):
nn.Conv2d(128, 256, kernel_size=(3, 3), padding=1),
nn.BatchNorm2d(256),
nn.GELU(),
# 全局平均池化层
# 输出形状为 [batch_size, 256, 1, 1]
nn.AdaptiveAvgPool2d((1, 1))
)
# 计算卷积后的特征维度
self.feature_dim = self._get_conv_output_size(seq_length, embedding_dim)
# 全局池化后的特征维度固定为 256
self.feature_dim = 256
# 全连接层
self.fc = nn.Sequential(
@ -42,12 +46,6 @@ class VideoClassifierV6_0(nn.Module):
self._init_weights()
def _get_conv_output_size(self, seq_length, embedding_dim):
# 用于计算卷积输出尺寸
x = torch.zeros(1, self.num_channels, seq_length, embedding_dim)
x = self.conv_layers(x)
return x.view(1, -1).size(1)
def _init_weights(self):
for module in self.modules():
if isinstance(module, nn.Conv2d) or isinstance(module, nn.Linear):
@ -63,8 +61,8 @@ class VideoClassifierV6_0(nn.Module):
# CNN特征提取
conv_features = self.conv_layers(channel_features)
# 展平特征
flat_features = conv_features.view(conv_features.size(0), -1)
# 展平特征(全局池化后形状为 [batch_size, 256, 1, 1]
flat_features = conv_features.view(conv_features.size(0), -1) # [batch_size, 256]
# 全连接层分类
return self.fc(flat_features)

View File

@ -4,16 +4,16 @@ import numpy as np
from torch.utils.data import DataLoader
import torch.optim as optim
from dataset import MultiChannelDataset
from filter.modelV6_0 import VideoClassifierV6_0, AdaptiveRecallLoss
from filter.modelV3_12 import VideoClassifierV3_12
from sklearn.metrics import f1_score, recall_score, precision_score, accuracy_score, classification_report
import os
import torch
from torch.utils.tensorboard import SummaryWriter # 引入 TensorBoard
from torch.utils.tensorboard import SummaryWriter
import time
from embedding import prepare_batch_per_token
from embedding import prepare_batch
import torch.nn as nn
# 动态生成子目录名称
run_name = f"run_{time.strftime('%Y%m%d_%H%M')}"
log_dir = os.path.join('./filter/runs', run_name)
@ -51,20 +51,16 @@ class_weights = torch.tensor(
)
# 初始化模型和SentenceTransformer
model = VideoClassifierV6_0()
checkpoint_name = './filter/checkpoints/best_model_V6.0.pt'
model = VideoClassifierV3_12()
checkpoint_name = './filter/checkpoints/best_model_V3.12.pt'
# 模型保存路径
os.makedirs('./filter/checkpoints', exist_ok=True)
# 优化器
optimizer = optim.AdamW(model.parameters(), lr=4e-4)
criterion = AdaptiveRecallLoss(
class_weights=class_weights,
alpha=0.9, # 召回率权重
gamma=1.6, # 困难样本聚焦
fp_penalty=0.8 # 假阳性惩罚强度
)
# Cross entropy loss
criterion = nn.CrossEntropyLoss()
def count_trainable_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
@ -76,7 +72,7 @@ def evaluate(model, dataloader):
with torch.no_grad():
for batch in dataloader:
batch_tensor = prepare_batch_per_token(batch['texts'], max_length=1024)
batch_tensor = prepare_batch(batch['texts'])
logits = model(batch_tensor)
preds = torch.argmax(logits, dim=1)
all_preds.extend(preds.cpu().numpy())
@ -109,7 +105,7 @@ for epoch in range(num_epochs):
for batch_idx, batch in enumerate(train_loader):
optimizer.zero_grad()
batch_tensor = prepare_batch_per_token(batch['texts'], max_length=1024)
batch_tensor = prepare_batch(batch['texts'])
logits = model(batch_tensor)